ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • phosphorus  (28)
  • Springer  (28)
  • Oxford University Press
  • 1995-1999  (28)
  • 1935-1939
Collection
Publisher
Years
Year
  • 1
    ISSN: 1573-515X
    Keywords: atmospheric deposition ; moss ; bog ; nitrogen ; phosphorus ; water table
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrogen additions as NH4NO3 corresponding to 0 (N0), 1 (N1), 3 (N3) and 10 (N10) g N m−2 yr−1 were made toSphagnum magellanicurn cores at two-week intervalsin situ at four sites across Europe, i.e. Lakkasuo (Finland). Männikjärve (Estonia), Moidach More (UK) and Côte de Braveix (France). The same treatments were applied in a glasshouse experiment in Neuchâtel (Switzerland) in which the water table depth was artificially maintained at 7, 17 and 37 cm below the moss surface. In the field, N assimilation in excess of values in wet deposition occurred in the absence of growth, but varied widely between sites, being absent in Lakkasuo (moss N∶P ratio 68) and greatest in Moidach More (N∶P 21). In the glasshouse, growth was reduced by lowering the water table without any apparent effect on N assimilation. Total N content of the moss in field sites increased as the mean depth of water table increased indicating growth limitation leading to increased N concentrations which could reduce the capacity for N retention. Greater contents of NH4 + in the underlying peat at 30 cm depth, both in response to NH4NO3 addition and in the unamended cores confirmed poor retention of inorganic N by the moss at Lakkasuo. Nitrate contents in the profiles at Lakkasuo, Moidach More, and Côte de Braveix were extremely low, even in the N10 treatment, but in Männikjärve, where the mean depth of water table was greatest and retention absent, appreciable amounts of NO3 − were detected in all cores. It is concluded that peatland drainage would reduce the capture of inorganic N in atmospheric deposition bySphagnum mosses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: phytoplankton ; trophic status ; phosphorus ; eutrophication ; species composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The paper reports the impact of a sharp artificial enrichment of the available phosphorus in a small, acidic and oligotrophic corrie lake and its effects upon the phytoplankton supported. Annual average chlorophyll increased tenfold within two years, from ∼ 1.2 to 12.6 µg chl a l-1, but the species represented by large populations are the same as previously. Chrysophyte species, however, make up a smaller fraction of the total crop.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 111 (1999), S. 1-18 
    ISSN: 1573-2932
    Keywords: biodegradation ; hydrocarbon ; nitrogen ; nutrient ratios ; phosphorus ; soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The biodegradation of hexadecane (C as hexadecane-C) was assessed under 34 different external nitrogen (N supplied as NO3-N) and phosphorus (P supplied as PO4-3-P) supply conditions in order to determine how different nutrient formulations affected nutrient limitation conditions during degradation. CO2 production yields indicated that shifts in N and P supply levels resulted in variable biodegradation responses due to shifts in the limiting-nutrient (e.g., from N to P). For example, the estimated maximum fractional CO2 yield ratio was 0.24 (mg CO2-C produced mg-1 hexadecane-C) for P-limited nutrient formulations (P:hexadecane-C〈0.01), whereas the yield ratio was more than two times greater when the system was not P- limited. Similar effects were observed for N-limited (N:hexadecane- C〈0.15) versus non-N-limited formulations. The relative bioavailability of natural soil-N and soil-P also was examined. In the soil studied, background soil-N was 96.3% organic-N and was found to be largely nonbioavailable. In contrast, high CO2 yields were observed even when no external P was supplied. An iterative mathematical procedure indicated that the Olsen soil-P subfraction (inorganic soil-P plus soluble organic soil- P) best approximated bioavailable soil-P for this soil. Our results indicate that both N and P additions affect biodegradation yields, but that stoichiometrically inappropriate nutrient mixes produce suboptimal CO2 yields. We also found that the bioavailable fractions of soil-N and soil-P should be incorporated into estimating the most suitable nutrient formulations for a given contamination scenario.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Key words Phosphorus dynamics ; Olsen ; phosphorus ; Soil phosphorus fractions ; Manure ; Soybean-wheat rotation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Soil P availability and efficiency of applied P may be improved through an understanding of soil P dynamics in relation to management practices in a cropping system. Our objectives in this study were to evaluate changes in plant-available (Olsen) P and in different inorganic P (Pi) and organic P (P0) fractions in soil as related to repeated additions of manure and fertilizer P under a soybean-wheat rotation. A field experiment on a Typic Haplustert was conducted from 1992 to 1995 wherein the annual treatments included four rates of fertilizer P (0, 11, 22 and 44 kg ha–1 applied to both soybean and wheat) in the absence and presence of 16 t ha–1 of manure (applied to soybean only). With regular application of fertilizer P to each crop the level of Olsen P increased significantly and linearly through the years in both manured and unmanured plots. The mean P balance required to raise Olsen P by 1 mg kg–1 was 17.9 kg ha–1 of fertilizer P in unmanured plots and 5.6 kg ha–1 of manure plus fertilizer P in manured plots. The relative sizes of labile [NaHCO3-extractable Pi (NaHCO3-Pi) and NaHCO3-extractable P0 (NaHCO3-P0)], moderately labile [NaOH-extractable Pi (NaOH-Pi) and NaOH-extractable P0 (NaOH-P0)] and stable [HCl-extractable P (HCl-P) and H2SO4/H2O2-extractable P (resisual-P)] P pools were in a 1 : 2.9 : 7.6 ratio. Application of fertilizer P and manure significantly increased NaHCO3-Pi and -P0 and NaOH-Pi, and -P0 fractions and also total P. However, HCl-P and residual-P were not affected. The changes in NaHCO3-Pi, NaOH-Pi and NaOH-P0 fractions were significantly correlated with the apparent P balance and were thought to represent biologically dynamic soil P and act as major sources and sinks of plant-available P.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 30 (1997), S. 224-230 
    ISSN: 1432-0495
    Keywords: Key words Sediment ; Washington ; DC ; Pollution ; phosphorus ; nutrients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Sediments in the rivers and basins around Washington, DC, have high concentrations of phosphorus, which, based on geographic distributions, is largely derived from urban runoff and municipal sewage. Dissolved-particulate phosphate exchange reactions and biological uptake of dissolved phosphorus from the water column may be an added source of phosphorus to the sediments. Concentrations of total sedimentary phosphorus ranged from 24 to 56 μm P/g-dw, and were highest in areas near combined sewer outfalls. As a part of this study, sedimentary phosphorus was fractionated into Fe-P, Ca-P, Al-P, and organic phases using a selective-sequential leaching procedure. The distribution of the phases in all sediments analyzed follow the order , Fe-P〉Ca-P〉Al-P. Spatial variations in the amounts of phosphorus in the different phases is related to the sources of phosphorus to the area. The proportions of occluded Al-P and organic P are 10–20% of the total P, respectively. This suggests that phosphorus from natural sources is small compared to anthropogenic inputs in this area. The high leachable Fe-P and Ca-P in these sediments might contribute a substantial amount of P to the water column under conditions of remobilization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-0417
    Keywords: diatoms ; eutrophication ; lake management ; paleolimnology ; British Columbia ; lakes ; phosphorus ; training sets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Eighteen lakes were added to a published training set of 46 British Columbia (BC) lakes in order to expand the original range of total phosphorus (TP) concentrations. Canonical correspondence analysis (CCA) was used to analyze the relationship between diatom assemblages and environmental variables. Specific conductivity and [TP] each explained significant (P≤0.05) directions of variance in the distribution of the diatoms. The relationship between diatom assemblages and [TP] was sufficiently strong to warrant the development of a weighted-averaging (WA) regression and calibration model that can be used to infer past trophic status from fossil diatom assemblages. The relationship between observed and inferred [TP] was not improved by the addition of more eutrophic lakes, however the [TP] range and the number of taxa used in the transfer function are now superior to the original model. Diatom species assemblages changed very little in lakes with TP concentrations greater than 85 µg 1−1, so we document the development of a model containing lakes with TP≤85 µg 1−1. The updated model uses 59 training lakes and covers a range of species optima from 6 to 41.9 µg 1−1 TP, and a total of 150 diatom taxa. The updated inference model provided a more realistic reconstruction of the anthropogenic history of a highly eutrophic BC lake. The model can now be used to infer past nutrient conditions in other BC lakes in order to assess changes in trophic status.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-9680
    Keywords: Imperata cylindrica ; Mucuna pruriens ; phosphorus ; soil organic matter ; Sumatra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Imperata cylindrica grasslands are widely believed to indicate poor soil fertility. Soil fertility improvement may have to be an important component of a reclamation strategy. Data for Sumatra, Indonesia indicate, however, that Imperata occurs on a broad range of soil types and is not confined to the poorest soils. A direct role of Imperata in soil degradation cannot be ascertained. In many instances, however, Imperata soils are low in available P and effective N supply. The use of rock phosphate in combination with erosion control (‘fertility traps’) and legume cover crops can be effective in restoring soil fertility. Case studies for a number of sites in Sumatra have confirmed the practical possibility of reclaiming grasslands for food and tree crops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9834
    Keywords: Alnus glutinosa ; constructed ecosystems ; disinfection ; Iris pseudacorus ; multi-stage systems ; nitrogen ; phosphorus ; constructed treatment wetlands ; optimization ; purification efficiencies ; urban wastewaters treatment ; Typha latifolia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tests were carried out under controlled conditions in the Experimental Plant of Viville (Arlon, Belgium) to enhance the purification of urban wastewater by “natural” means. The results demonstrate the need to structure treatment systems in a series of different artificial ecosystems (or a Hierarchical Mosaic of Artificial Ecosystems — MHEA in French). The first two levels we used were made up of an unplanted aquatic ecosystem (stabilization pond) followed by a semi-aquatic ecosystem planted withTypha latifolia L. in which the water flows over the substrate. At a flow rate of 4 m2/PE (1 PE=150 1/day of typical urban wastewaters in Belgian rural zones), this first stage substantially reduces suspended solids (SS), COD and BOD5, a significant amount of tot-N and tot-P, and reduces pathogens by 100-fold. Further, the system is easy to manage (sludge is eliminated in the first stage and biomass is collected in the second stage) and the treatment system does not clog up. Nevertheless, real and sustainable environmental protection demands even higher performance rates, and these first two stages, both in terms of design and dimension, can only be considered as a satisfactory part of a MHEA system. Artificial aquatic, semi-aquatic, and terrestrial ecosystems were systematically compared at the third and fourth stage of the system to increase the overall removal efficiency. The most complete and efficient system in our tests (i.e., the one that provides the most successful primary (SS), secondary (COD and BOD5) and tertiary (N and P) treatment and the best pathogens removal rates) was made up of 3 sequential series of ecosystems: an aquatic ecosystem whose flow went into a plantedTypha latifolia system (surface water flow), that flowed into a terrestrial ecosystem planted withAlnus glutinosa (L.) Gaertn (vertical subsurface water flow). A total surface area (stages 1–4) of 8 m2/PE ensured a high performance level whose outflow conformed to the strictest European norms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-515X
    Keywords: anthropogenic ; atmospheric deposition ; eutrophication ; fertilizer ; nitrogen ; nitrogen budget ; nitrogen fixation ; N:P ratio ; phosphorus ; pristine ; rivers ; temperate ; tropical
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr−1 out of a total for the entire North Atlantic region of 13.1 Tg yr−1 . On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km−2 yr−1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the major control over river nitrogen export in some regions such as the northeastern U.S. Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...