ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cucurbita pepo  (2)
  • Arctic-alpine  (1)
  • Springer  (3)
  • Geological Society of America (GSA)
  • International Union of Crystallography (IUCr)
  • Periodicals Archive Online (PAO)
  • 1995-1999  (3)
  • 1950-1954
Collection
Publisher
  • Springer  (3)
  • Geological Society of America (GSA)
  • International Union of Crystallography (IUCr)
  • Periodicals Archive Online (PAO)
Years
Year
  • 1
    ISSN: 1432-1890
    Keywords: Key words Mycorrhizae ; Arctic-alpine ; Dark septate fungi
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Roots of 40 taxa of higher plants (Pteridophyta, Spermatophyta) from two alpine study sites in Denali National Park and Preserve in central Alaska were examined for their mycorrhizal colonization. We observed ectomycorrhizae on six species: Betula nana, Salix reticulata, Salix polaris, Salix arctica, Polygonum viviparum, and Dryas octopetala. Seven taxa, Cassiope tetragona, Empetrum nigrum, Ledum palustre subsp. decumbens, Ledum palustre subsp. groenlandicum, Loiseleuria procumbens, Vaccinium uliginosum and Vaccinium vitis–idaea (all Ericales), had ericoid mycorrhizae. One species, Arctostaphylos alpina, formed a typical arbutoid mycorrhiza. Two species (Sibbaldia procumbens and Aconitum delphinifolium) showed well-developed VA mycorrhizae, whereas three species of plants (Lycopodium clavatum, Silene acaulis and Oxytropis scammaniana) had vesicles, but no arbuscules. The roots of 11 other plants (Lycopodium clavatum, Lycopodium selago, Silene acaulis, Gentiana algida, Lupinus arcticus, Oxytropis scammaniana, Pedicularis langsdorffii, Pedicularis capitata, Pedicularis verticillata, Artemisia sp. and Carex bigelowii) had a variety of intracellular colonizations which are referred to as dark septate fungi. No mycorrhizae were found on 12 other plants: Equisetum arvense, Equisetum variegatum, Lycopodium alpinum, Polygonum bistorta, Saxifraga hieracifolia, Saxifraga hirculus, Astragalus alpinus, Pedicularis kanei, Petasites frigidus, Carex podocarpa, Carex microchaeta and Poa arctica. A possible ecological role of dark septate fungi is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 885-890 
    ISSN: 1432-2242
    Keywords: Key words  Microgametophyte selection ; Pollen selection ; Pollen competition ; Cucurbita texana ; Cucurbita pepo
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   We examined the effects of pollen selection for rapid pollen-tube growth on progeny vigor. First, we crossed a wild gourd (Cucurbita texana) to a cultivated zucchini (Cucurbita pepo cv `Black Beauty') to produce an F1 and then an F2 generation. Half of the F1 seeds were produced by depositing small loads of C. texana pollen onto the stigmas of C. pepo. These small pollen loads were insufficient to produce a full complement of seeds and, consequently, both the fast- and the slow-growing pollen tubes were permitted to achieve fertilization. An F2 generation was then produced by depositing small loads of F1 pollen onto stigmas of F1 plants. The F2 seeds resulting from two generations of small pollen loads are termed 'the non-selected line' because there was little or no selection for pollen-tube growth rate on these plants. The other half of the F1 and F2 seeds were produced by depositing large pollen loads (〉10000 pollen grains) onto stigmas and then allowing only the first 1% or so of the pollen tubes that entered the ovary to fertilize the ovules. We did this by excising the styles at the ovary at 12–15 h after pollination. The resulting F2 seeds are termed `the selected line' because they were produced by two generations of selection for only the fastest growing pollen tubes. Small pollen loads from the F2 plants, both the selected and the non-selected lines, were then deposited onto stigmas of different C. pepo flowers, and the vigor of the resulting seeds was compared under greenhouse and field conditions. The results showed that the seeds fertilized by pollen from the selected line had greater vegetative vigor as seedlings and greater flower and fruit production as mature plants than the seeds fertilized by pollen from the non-selected line. This study demonstrates that selection for fast pollen-tube growth (selection on the microgametophyte) leads to a correlated increase in sporophyte (progeny) vigor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 885-890 
    ISSN: 1432-2242
    Keywords: Microgametophyte selection ; Pollen selection ; Pollen competition ; Cucurbita texana ; Cucurbita pepo
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined the effects of pollen selection for rapid pollen-tube growth on progeny vigor. First, we crossed a wild gourd (Cucurbita texana) to a cultivated zucchini (Cucurbita pepo cv ‘Black Beauty’) to produce an F1 and then an F2 generation. Half of the F1 seeds were produced by depositing small loads of C. texana pollen onto the stigmas of C. pepo. These small pollen loads were insufficient to produce a full complement of seeds and, consequently, both the fast- and the slow-growing pollen tubes were permitted to achieve fertilization. An F2 generation was then produced by depositing small loads of F1 pollen onto stigmas of F1 plants. The F2 seeds resulting from two generations of small pollen loads are termed the non-selected line because there was little or no selection for pollen-tube growth rate on these plants. The other half of the F1 and F2 seeds were produced by depositing large pollen loads (〉10 000 pollen grains) onto stigmas and then allowing only the first 1% or so of the pollen tubes that entered the ovary to fertilize the ovules. We did this by excising the styles at the ovary at 12–15 h after pollination. The resulting F2 seeds are termed ‘the selected line’ because they were produced by two generations of selection for only the fastest growing pollen tubes. Small pollen loads from the F2plants, both the selected and the non-selected lines, were then deposited onto stigmas of different C. pepo flowers, and the vigor of the resulting seeds was compared under greenhouse and field conditions. The results showed that the seeds fertilized by pollen from the selected line had greater vegetative vigor as seedlings and greater flower and fruit production as mature plants than the seeds fertilized by pollen from the non-selected line. This study demonstrates that selection for fast pollen-tube growth (selection on the microgametophyte) leads to a correlated increase in sporophyte (progeny) vigor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...