ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 249 (1995), S. 507-514 
    ISSN: 1617-4623
    Keywords: Chloroplast ; Maize ; Organelle biogenesis ; Cytochrome b 6 f ; Thylakoid membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nuclear genes essential for the biogenesis of the chloroplast cytochrome b 6 f complex were identified by mutations that cause the specific loss of the complex. We describe four transposon-induced maize mutants that lack cytochrome b 6 f proteins but contain normal levels of other photosynthetic complexes. The four mutations define two nuclear genes. To identify the step at which each mutation blocks protein accumulation, mRNAs encoding each subunit were examined by Northern hybridization analysis and the rates of subunit synthesis were examined in pulse-labeling experiments. In each mutant the mRNAs encoding the known subunits of the complex were normal in size and abundance and the major subunits were synthesized at normal rates. Thus, these mutations block the biogenesis of the cytochrome b 6 f complex at a post-translational step. The two nuclear genes identified by these mutations may encode previously unknown subunits, be involved in prosthetic group synthesis or attachment, or facilitate assembly of the complex. These mutations were also used to provide evidence for the authenticity of a proposed fifth subunit of the complex and to demonstrate a role for the cytochrome b 6 f complex in protecting photosystem 11 from light-induced degradation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1433-4909
    Keywords: Key words Hyperthermophilic ; Crenarchaeota ; Hydrogen and sulfur dependence ; Hydrothermal ; Stetteria hydrogenophila
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new hyperthermophilic, strictly anaerobic crenarchaeote, Stetteria hydrogenophila DSM11227 representing a new genus within the family of Desulfurococcaceae, was isolated from the sediment of a marine hydrothermal system at Paleohori Bay in Milos, Greece. Cells are gram-negative irregular and disc-shaped cocci, 0.5–1.5 μm in diameter, which are flagellate and can form cytoplasmatic protrusions up to 2 μm in length. The strain grew optimally at 95°C at pH 6.0 and at a NaCl concentration of 3%. The organism grew mixotrophically on peptide substrates. It required elemental sulfur as an external electron acceptor, and in addition, its growth was completely dependent on the presence of molecular hydrogen. Sulfur could be replaced by thiosulfate. H2S, CO2, acetate, and ethanol were identified as products of metabolism. The G + C content of DNA was 65 mol%. Analysis of its phylogenetic position by sequence analysis of 16S rRNA placed this organism in the family of Desulfurococcaceae. The dependence of this organism on both hydrogen and sulfur during growth on peptide substrates distinguishes Stetteria from all previously described species of Crenarchaeota.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...