ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The forest floor is a major reservoir of organic matter and nutrients for the ecosystem and as such it influences or regulates most of the functional processes occurring throughout the ecosystem. This study reports on the nutrient and organic matter content of the forest floor of the Hubbard Brook Experimental Forest during different seasons and attempts to correlate results from studies of vegetation, litter, decomposition, stemflow, throughfall, and soil. An organic matter budget is presented for an undisturbed watershed. Average weight of the forest floor on an undisturbed watershed ranged from 25,500 to 85,500 kg/ha. The weighted watershed average was 46,800 kg/ha. Although the F and H horizons did not vary significantly with time, the L horizon increased significantly during the period June to August largely as a result of a severe hail storm. The order of abundance of elements in the forest floor was Nτ;Ca≷Fe〉S〉P〉Mn〉K〉Mg〉Na〉Zn〉Cu. The concentrations of Ca, K, and Mn decreased with depth in the forest floor while N, P, S, Na, Fe, Zn, and Cu concentrations increased. N:P ratios were similar in decomposing leaf tissue, the forest floor, litterfall, and net stemflow plus throughfall suggesting a similar pattern of cycling. S was proportional to N and P in decomposing leaf tissue, the forest floor, and litterfall. Net stemflow and throughfall were affected by a relatively large input of SO4=-S from the atmosphere. Residence times for elements in the forest floor were affected by inputs other than litterfall (precipitation, stemflow, and throughfall). Calculation of residence times using all inputs caused smaller values than if litterfall alone was used. While all residence times were reduced, the major differences occurred for K, S, and Na. N and P showed relatively long residence times as a result of retranslocation and immobilization by decomposers. The slow turnover rate because of the strong demand and retention by all biota must account for the efficiency of the intrasystem cycling process for N and P. K showed the shortest residence time. A rapid and efficient uptake of K by vegetation seems to account for the efficient cycling of this element. The patterns of nutrient cycling are several depending on the chemical properties of the forest floor, and nutritional requirements of the biota.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 6 (1976), S. 423-433 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The acidity of precipitation in rural, forested areas of the northeastern United States is dominated by the strong mineral acids: H2SO4 and HN03. Weak acids have a negligible effect on the measured acidity (pH) of precipitation. These conclusions are based on total acidity titrations and detailed analysis of organic and inorganic components in precipitation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Being downwind of eastern and midwestern industrial centers, the Hubbard Brook Experimental Forest offers a prime location to monitor long-term trends in atmospheric chemistry. Continuous measurements of precipitation chemistry during the last 10 yr provide a measure of recent changes in precipitation inputs of H ion. The weighted average pH of precipitation during 1964–65 to 1973–74 was 4.14, with a minimum annual value of 4.03 in 1970–71 and a maximum annual value of 4.21 in 1973–74. The sum of all cations except H ion decreased from 51 μeq 1−1 in 1964–65 to 23 μeq 1−1 in 1973–74 providing a significant drop in neutralizing capacity during this period. Based upon regression analysis, the input in equivalents of H ion and nitrate increased by 1.4-fold and 2.3-fold respectively, from 1964–65 to 1973–74. Input of all other ions either decreased or showed no trend. Based upon a stoichiometric formation process in which a sea-salt, anionic component is subtracted from the total anions in precipitation, SO4 =, contribution to acidity dropped from 83% to 66%, whereas NO3 − increased from 15% to 30% during 1964–65 to 1973–74. The increased annual input of H ion at Hubbard Brook during the past 10 yr is highly correlated with the increased input of nitrate in precipitation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 6 (1976), S. 241-258 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Precipitation is currently collected by several methods, including several different designs of collection apparatus. We are investigating these differing methods and designs to determine which gives the most representative sample of precipitation for the analysis of some 25 chemical parameters. The experimental site, located in Ithaca, New York, has 22 collectors of 10 different designs. The designs include bulk (wet and dry deposition collected together), wet only (only rain and snow) and wet/dry (collects wet and dry deposition separately). In every sampling period, which varies from 1 day to 1 mo, depending on the time variable being tested, the following chemical parameters are determined: conductivity, pH, Ca, Mg, Na, K, NH4, N03, Ntotal Si04, PO4, Ptotal, Cl, SO4, DOC, Zn, Cu, Mn, Fe, Al, Ni, Cd, Pb, Ag, DDT, DDE, Dieldrin and PCB's. The results of the investigation lead us to conclude that: (1) Precipitation samples must exclude dry deposition if accurate information on the chemical content of precipitation is required. (2) Substantial contamination results when glass and plastic collectors are used to sample precipitation for inorganic and organic components, respectively. (3) The inorganic components of precipitation samples of low pH (3.5 to 4.5), with the exception of P04 and Cl, exhibited no significant change in concentration when stored at 4\dgC for a period of 8 mo. We believe this is due to the stabilizing influence of a large concentration of H ions. (4) If quantitative information on the chemical composition is required, precipitation samples should be collected at no longer than weekly intervals if immediate collection is not possible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-515X
    Keywords: biogeochemistry of sulfur ; ecosystem analysis ; nutrient cycling ; stable sulfur isotopes ; δ34S ; isotopic fractionation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract In natural ecosystems, differences often exist in the relative abundanceof stable S isotopes (°34S) that can provide clues as tothe source, nature, and cycling of S. Values of °34S inprecipitation, throughfall, soils, soil solution, and stream waters weremeasured at the Hubbard Brook Experimental Forest (HBEF), New Hampshire.Values of °34S in precipitation and throughfall weresimilar to each other but differed seasonally. Precipitation°34S values were higher in the dormant season[°34S = 5.9±0.6‰ (17)][Mean + SE(N)]than in the growing season [°34S = 5.0±0.6‰(40)] but throughfall growing-season values were higher[°34S = 5.6±0.6‰(68)] than for the dormantseason [°34S = 4.9±0.7‰ (9)]. Different treespecies did not affect throughfall °34S values. In soilsolution, °34S values were higher in the growing season(°34S = 8.9±2.8‰; 8.8±1.7‰;and 4.0±0.6‰ for Oa, Bh, and Bs horizons, respectively) thanin the dormant season (°34S = 5.6±1.5‰;3.7±2.4‰; and 3.4±1.2‰ for Oa, Bh, and Bshorizons, respectively). These seasonal differences in°34S were probably caused by biological isotopicfractionation. The °34S values in streams were generally2‰ lower and more variable than those in precipitation andthroughfall, suggesting fractionation and/or different isotopic sources inthe soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 333-351 
    ISSN: 1573-515X
    Keywords: base cations ; calcium ; forest ecosystem ; mobile anions ; soil acidification ; surface-water acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Anion fluxes from a forest soil are usually correlated with those of base cations (BC). Declines in base cation deposition or long-term depletion from the soil may change these relationships. We used multiple regression to identify biogeochemical variables predicting annual volume-weighted concentrations of BC in streamwater draining a forested watershed, and analysis of variance to compare the effects of Ca and Cl inputs on BC fluxes out of soil horizons in irrigated plots. For the watershed, anion concentrations in streamwater predicted BC export most precisely (R2 = 0.84). The best two-variable model (adjusted R2 = 0.91) also included BC concentration in bulk deposition. Consistent with predictions from equations governing exchange chemistry, the proportion of charge contributed by Ca2+ increased with increasing total anion concentration, while that of Na+ decreased. At the plot scale, Cl- concentrations in treatment solutions had a stronger effect (p = 0.06) on BC concentration in Oa-horizon solutions than did Ca2+ concentrations (p = 0.33). In individual horizons of individual plots, BC and total ion concentrations were correlated, but cation composition was not consistent within horizons from different plots. This study detected no evidence of long-term cation depletion in the soils controlling streamwater, but did detect extremely base-poor plots. Because acid deposition affects surface horizons first, streamwater chemistry may not be an adequate way to assess nutrient supply of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 335-353 
    ISSN: 1573-515X
    Keywords: base cations ; calcium ; forest ecosystem ; mobile anions ; soil acidification ; surfacewater acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Anion fluxes from a forest soil are usually correlated with those of base cations (BC). Declines in base cation deposition or long-term depletion from the soil may change these relationships. We used multiple regression to identify biogeochemical variables predicting annual volume-weighted concentrations of BC in streamwater draining a forested watershed, and analysis of variance to compare the effects of Ca and Cl inputs on BC fluxes out of soil horizons in irrigated plots. For the watershed, anion concentrations in streamwater predicted BC export most precisely (R 2=0.84). The best two-variable model (adjustedR 2=0.91) also included BC concentration in bulk deposition. Consistent with predictions from equations governing exchange chemistry, the proportion of charge contributed by Ca2+ increased with increasing total anion concentration, while that of Na+ decreased. At the plot scale, Cl− concentrations in treatment solutions had a stronger effect (p=0.06) on BC concentration in Oa-horizon solutions than did Ca2+ concentrations (p=0.33). In individual horizons of individual plots, BC and total ion concentrations were correlated, but cation composition was not consistent within horizons from different plots. This study detected no evidence of longterm cation depletion in the soils controlling streamwater, but did detect extremely base-poor plots. Because acid deposition affects surface horizons first, streamwater chemistry may not be an adequate way to assess nutrient supply of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 7 (1977), S. 355-365 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Data collected since 1965 at a network of nine stations in the northeastern United States show that precipitation is most acid in the growing season (May-September) and least acid in winter (December-February). For the Hubbard Brook station in New Hampshire, where the mean hydrogen ion content of precipitation ranges between 46 peq 1−1 in winter and 102 peq 1−1 in summer, the seasonal pattern in acidity correlates closely with seasonal differences in S deposition from the atmosphere. As summer precipitation passes through the forest canopy, H ion concentrations are lowered by an average of 90%, primarily as a result of exchange with other cations. In winter the H ion content of incident precipitation is lowered from a mean of 50 peq 1−1 to a mean of 25 peq l−1 during storage in the snowpack.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 116 (1999), S. 479-499 
    ISSN: 1573-2932
    Keywords: acidification ; base cations ; bromide ; forest ecosystems ; mobile anion ; soil solution ; TFA ; trifluoroacetate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Experimental plots within the Hubbard Brook Experimental Forest, NH, were treated with sodium trifluoroacetate (TFA) and lithium bromide (Br), to study the impact of TFA alone and in the presence of increased anion concentrations (e.g. acid deposition) on the soil solution chemistry of a northern hardwood forest soil. Trifluoroacetate is a major atmospheric degradation product of replacement compounds of chlorofluorocarbons (CFC) and Br is widely used as a hydrologic tracer. Calculated drainage losses via soil water flow were less than 60% of inputs, added during the summer, and TFA and Br were temporarily retained in the soil until fall. The initial indication of an acid input of the treatments (HTFA, HBr) in the Bs2 horizon, which reflects stream water chemistry as well, was an increase of base cations in the soil solution, decreasing the soil's acid neutralizing capacity. Thereafter, trifluoroacetate and Br concentrations peaked after the peak in base cations, synchronous with peaks in H+ and Al concentrations. Organic anions, nitrate and chloride played the major role in accompaning base cations out of the solum. Sulfate retention at soil adsorption sites was increased by the presence of TFA and Br, reducing its role as a mobile anion of base cations in this experiment. Relative retention of anions for the whole profile of this northern hardwood forest soil was estimated by correlation analyses and input-output balances in decreasing order on an equivalant basis: SO4 〉 TFA = Br ≥ Cl 〉 NO3 〉 organic anions. Recovery from acid additions were recorded within several weeks after the treatments were stopped. Evaluating the impact of added chemical compounds to soils must be considered within the context of linkages among element cycles and pools.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 83 (1995), S. 97-99 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...