ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Other Sources
  • 3-dioxygenase  (1)
  • Bicarbonate  (1)
  • 1995-1999  (1)
  • 1975-1979  (1)
  • 1945-1949
  • 1920-1924
  • 1
    ISSN: 1433-4909
    Keywords: Key words Catechol 2 ; 3-dioxygenase ; Bacillus thermoleovorans ; Thermophilic ; Enzyme stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Catechol 2,3-dioxygenase from the thermophilic Bacillus thermoleovorans A2 was purified and characterized. The catechol 2,3-dioxygenase has a molecular mass of 135 000 Da and consists of four identical subunits of 34 700 Da. One iron per enzyme subunit was detected using atom absorption spectroscopy. Enzyme activity was not inhibited by EDTA, suggesting that the iron is tightly bound. Addition of hydrogen peroxide to the enzyme completely destroyed activity, indicating that the iron was in the divalent state. The isoelectric point of the enzyme was 4.8. The enzyme displayed optimal activity at pH 7.2 and 70°C. The half-life of the catechol 2,3-dioxygenase at the optimum temperature was 1.5 min under aerobic conditions and 10 min in a nitrogen atmosphere. This stability of the enzyme is comparable to the stability of the enzyme from the mesophilic Pseudomonas putida mt-2. The stability of the cloned enzyme in E. coli extracts was identical to the stability in wild-type extracts, suggesting that no stabilizing factors were present in Bacillus thermoleovorans A2 In whole cells the half-life of the enzyme at 70°C was approximately 26 min, when protein synthesis was disrupted by chloramphenicol; however, the activity remained constant when protein synthesis was not inhibited. From these results we concluded that catechol 2,3-dioxygenase from Bacillus thermoleovorans A2 is not particularly thermostable, but that the organism retains the ability to degrade phenol at high temperatures because of continuous production of this enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 51 (1979), S. 431-435 
    ISSN: 1573-5036
    Keywords: Bicarbonate ; Bush beans ; 11C ; Cation-anion ; CO2 fixation ; Galenia ; Tracer ; Uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary 11C which is cyclotron produced by14N(P, α)11C(half-life 20.1M) was use as a tracer of bicarbonate to determine its movements from a nutrient solution through roots to stems and leaves of bush bean plants (Phaseolus vulgaris L. var. Improved Tendergreen). The short time involved and the high solution pH minimized the need for use of the Hederson Hasselbach equation for activity correction. Quantities of11C did move into roots, stems and leaves with a sharp decreasing gradient (root/stem=14.5, stems/leaves=11.7) More11C moved into plants with KHCO3 than with NaHCO3. The (NH4)2SO4 enhanced11C uptake and KNO3 than with competition indicated possibility of some uptake of HCO 3 − . In an experiment withGalenia pubescens (Eckl. and Zeyh.) Druce, the11C was more readily moved to stems and leaves than in bush bean indicating substantial uptake of HCO 3 − .
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...