ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • climate  (2)
  • soil organic matter  (2)
  • 1995-1999  (2)
  • 1990-1994  (2)
Collection
Publisher
Years
  • 1995-1999  (2)
  • 1990-1994  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 149 (1993), S. 27-41 
    ISSN: 1573-5036
    Keywords: carbon sinks ; changes in soils ; soil fertility ; soil management ; soil organic carbon ; soil organic matter ; tropical soil ; succession
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The prevailing paradigm for anticipating changes in soil organic carbon (SOC) with changes in land use postulates reductions in SOC in managed systems (agriculture and tree plantations) relative to mature tropical forests. Variations of this notion are used in carbon models to predict the role of tropical soils in the global carbon cycle. Invariably these models show tropical soils as sources of atmospheric carbon. We present data from a variety of studies that show that SOC in managed systems can be lower, the same as, or greater than mature tropical forests and that SOC can increase rapidly after the abandonment of agricultural fields. History of land use affects the comparison of SOC in managed and natural ecosystems. Our review of the literature also highlights the need for greater precautions when comparing SOC in mature tropical forests with that of managed ecosystems. Information on previous land use, bulk density, and consistency in sampling depth are some of the most common omissions in published studies. From comparable SOC data from a variety of tropical land uses we estimate that tropical soils can accumulate between 168 and 553 Tg C/yr. The greatest potential for carbon sequestration in tropical soils is in the forest fallows which cover some 250 million hectares. Increased attention to SOC by land managers can result in greater rates of carbon sequestration than predicted by current SOC models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: biomass ; litter fall ; litter standing stock ; organic matter budget ; Pinus caribaea plantations ; root biomass ; root production ; secondary forests ; soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The distribution of tree biomass and the allocation of organic matter production were measured in an 11-yr-old Pinus caribaea plantation and a paired broadleaf secondary forest growing under the same climatic conditions. The pine plantation had significantly more mass aboveground than the secondary forest (94.9 vs 35.6 t ha-1 for biomass and 10.5 vs 5.0 t ha-1 for litter), whereas the secondary forest had significantly more fine roots (⩽2 mm diameter) than the pine plantation (10.5 and 1.0 t ha-1, respectively). Standing stock of dead fine roots was higher than aboveground litter in the secondary forest. In contrast, aboveground litter in pine was more than ten times higher than the dead root fraction. Both pine and secondary forests had similar total organic matter productions (19.2 and 19.4 t ha-1 yr-1, respectively) but structural allocation of that production was significantly different between the two forests; 44% of total production was allocated belowground in the secondary forest, whereas 94% was allocated aboveground in pine. The growth strategies represented by fast growth and large structural allocation aboveground, as for pine, and almost half the production allocated belowground, as for the secondary forest, illustrate equally successful, but contrasting growth strategies under the same climate, regardless of soil characteristics. The patterns of accumulation of organic matter in the soil profile indicated contrasting nutrient immobilization and mineralization sites and sources for soil organic matter formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: climate ; methane ; N2O ; Puerto Rico ; soil oxygen ; soil phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We measured soil oxygen concentrations at 10 and 35 cm depths and indices of biogeochemical cycling in upland forest soils along a rainfall and elevation gradient (3500–5000 mm y−1; 350–1050 masl) and along topographic gradients (ridge to valley, ∼150 m) in the Luquillo Experimental Forest, Puerto Rico. Along the rainfall gradient, soil O2 availability decreased significantly with increasing annual rainfall, and reached very low levels (〈3%) in individual chambers for up to 25 consecutive weeks over 82 weeks of study. Along localized topographic gradients, soil O2 concentrations were variable and decreased significantly from ridges to valleys. In the valleys, up to 35% of the observations at 10–35 cm depth were 〈3% soil O2. Cross correlation analyses showed that soil O2 concentrations were significantly positively correlated along the topographic gradient, and were sensitive to rainfall and hydrologic output. Soil O2 concentrations in valley soils were correlated with rainfall from the previous day, while ridge sites were correlated with cumulative rainfall inputs over 4 weeks. Soils at the wettest point along the rainfall gradient had very high soil methane concentrations (3–24%) indicating a strong influence of anaerobic processes. We measured net methane emission to the atmosphere at the wettest sites of the rainfall gradient, and in the valleys along topographic gradients. Other measures of biogeochemical function such as soil organic matter content and P availability were sensitive to chronic O2 depletion along the rainfall gradient, but less sensitive to the variable soil O2 environment exhibited at lower elevations along topographic gradients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-515X
    Keywords: climate ; methane ; N2O ; Puerto Rico ; soil oxygen ; soil phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We measured soil oxygen concentrations at 10 and 35 cm depths and indices of biogeochemical cycling in upland forest soils along a rainfall and elevation gradient (3500–5000 mm y−1; 350–1050 masl) and along topographic gradients (ridge to valley, ∼150 m) in the Luquillo Experimental Forest, Puerto Rico. Along the rainfall gradient, soil O2 availability decreased significantly with increasing annual rainfall, and reached very low levels (〈3%) in individual chambers for up to 25 consecutive weeks over 82 weeks of study. Along localized topographic gradients, soil O2 concentrations were variable and decreased significantly from ridges to valleys. In the valleys, up to 35% of the observations at 10–35 cm depth were 〈3% soil O2. Cross correlation analyses showed that soil O2 concentrations were significantly positively correlated along the topographic gradient, and were sensitive to rainfall and hydrologic output. Soil O2 concentrations in valley soils were correlated with rainfall from the previous day, while ridge sites were correlated with cumulative rainfall inputs over 4 weeks. Soils at the wettest point along the rainfall gradient had very high soil methane concentrations (3–24%) indicating a strong influence of anaerobic processes. We measured net methane emission to the atmosphere at the wettest sites of the rainfall gradient, and in the valleys along topographic gradients. Other measures of biogeochemical function such as soil organic matter content and P availability were sensitive to chronic O2 depletion along the rainfall gradient, but less sensitive to the variable soil O2 environment exhibited at lower elevations along topographic gradients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...