ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Global change biology 4 (1998), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Global change includes land-use change, elevated CO2 concentrations, increased temperature and increased rainfall variability. All four aspects by themselves and in combination will influence the role of roots in linking below- and above-ground ecosystem function via organic and inorganic resource flows. Root-mediated ecosystem functions which may be modified by global change include below-ground resource (water, nutrients) capture, creation and exploitation of spatial heterogeneity, buffering of temporal variations in above-ground factors, supply and storage of C and nutrients to the below-ground ecosystem, mobilization of nutrients and C from stored soil reserves, and gas exchange between soil and atmosphere including the emission from soil of greenhouse gases.The theory of a functional equilibrium between root and shoot allocation is used to explore predicted responses to elevated CO2 in relation to water or nutrient supply as limiting root function. The theory predicts no change in root:shoot allocation where water uptake is the limiting root function, but substantial shifts where nutrient uptake is (or becomes) the limiting function. Root turnover will not likely be influenced by elevated CO2, but by changes in regularity of water supply. A number of possible mechanisms for root-mediated N mineralization is discussed in the light of climate change factors. Rhizovory (root consumption) may increase under global change as the balance between plant chemical defense and adapted root consuming organisms may be modified during biome shifts in response to climate change. Root-mediated gas exchange allows oxygen to penetrate into soils and methane (CH4) to escape from wetland soils of tundra ecosystems as well as tropical rice production systems. The effect on net greenhouse gas emissions of biome shifts (fens replacing bogs) as well as of agricultural land management will depend partly on aerenchyma in roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: °13C value ; Tropical forests ; CO2 recycling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The variability of δ13C values was measured in leaf, stem and root tissues of several tree species growing in closed natural and plantation forests in the Luquillo mountains of Puerto Rico. Results confirm a significant decrease of δ13C values from the tree canopy to the forest floor. The values measured in understory plants growing in gaps were not significantly different from the average for plants growing under the forest shade. Seedling leaf values tended to be more positive than those of saplings, probably reflecting the contribution of organic matter from the mother tree. Photosynthetic independence on the forest floor results in a reduction in °13C value. Stem and root tissue values of seedlings and saplings were less negative than those of the leaves of the same plants. It is suggested that this difference results from the slower change in isotopic composition experienced by the woody tissue, as the seedlings become photosynthetically independent in the forest floor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 76 (1988), S. 222-235 
    ISSN: 1432-1939
    Keywords: Amazonian forests ; Root growth ; Nutrient release ; Organic matter decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Relationships between fine root growth, rates of litter decomposition and nutrient release were analysed in a mixed forest on Tierra Firme, a Tall Amazon Caatinga and a Low Bana on podsolized sands near San Carlos de Rio Negro. Fine root growth in the upper soil layers (root mat+10 cm upper soil) was considerably higher in the Tierra Firme forest (1117 g m-2 yr-1) than in tall Cattinga (120) and Bana (235). Fine root growth on top of the root mat was stimulated significantly by added N in Tall Caatinga and Low Bana forests, by P in Tierra Firme and Bana forests, and by Ca only in the Tierra Firme forest. Rate of fine root growth in Tierra Firme forest on fresh litter is strongly correlated with the Mg and Ca content of litter. Rate of litter decomposition was inversely related to % lignin and the lignin/N ratio of litter. Litter contact with the dense root mat of the Tierra Firme increased rates of disappearance for biomass, Ca and Mg as compared with litter permanently separated or lifted weekly from the root mat to avoid root attachment. Nitrogen concentration of decomposing litter increased in all forests, net N released being observed only in Caryocar glabrum and Aspidosperma megalocarpum of the Tierra Firme forest after one year of exposure. Results emphasize the differences in limiting nutrients in amazonian forest ecosystems on contrasting soil types: Tierra Firme forests are particularly limited by Ca and Mg, while Caatinga and Bana forests are limited mainly by N availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 125 (1990), S. 263-280 
    ISSN: 1573-5036
    Keywords: Anthocephalus chinensis ; Eucalyptus × patentinervis ; E. saligna ; Hernandia sonora ; Hibiscus elatus ; Khaya nyasica ; litter ; Luquillo Experimental Forest ; nutrient cycling ; Pinus caribaea var. hondurensis ; P. elliottii var. densa ; Puerto Rico ; soil fertility ; Swietenia macrophylla ; Terminalia ivorensis ; tropical tree plantations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The importance of litter to nutrient and organic matter storage and the possible influence of species selection on soil fertility in ten stands each consisting of a separate tree species were examined in this study. The plantations had been grown under similar conditions in an arboretum in the Luquillo Experimental Forest, Puerto Rico. The species involved were: Anthocephalus chinensis, Eucalyptus × patentinervis, E. saligna, Hernandia sonora, Hibiscus elatus, Khaya nyasica, Pinus caribaea var. hondurensis, P. elliottii var. densa, Swietenia macrophylla, and Terminalia ivorensis. After 26 yr, litter mass ranged from 5 mg ha-1 in the H. sonora stand to 27.2 Mg ha-1 in the P. caribaea stand. Nutrients in the litter (N, P, K, Ca, and Mg) also varied widely, but stands were ranked in different order when ranked by nutrients in the litter than then ranked according to accumulation of mass. Only E. saligna and A. chinensis stands were ranked similarly in accumulation of both nutrients and mass, and the stand of H. elatus was ranked higher with respect to nutrient accumulation than to accumulation of mass. The nutrient concentration in standing leaf litter generally increased in the order of recently fallen 〈old intact〈 fragmented. Nutrient concentration of standing leaf litter appears to increase with age and depth in the litter layer. The amount of nutrients stored in the litter compartment of these plantations was in the same order of magnitude as the quantity of available nutrients in the top 10-cm of mineral soil. Total litter mass was negatively correlated with the mass-weighted concentration of N, K, and Mg. The same relationship was found for Ca in the leaf litter and N in the fine wood litter compartments. In some stands (notably P. caribaea, P. elliottii, and E. saligna), leaf litter derived from species other than the species planted in that particular stand had higher nutrient concentration than leaf litter from the planted species. Soils of the 10 stands were classified in the same soil series and had similar texture (clay soils). However, significantly different chemical characteristics were found. Results obtained by analysis of covariance and by limiting comparisons to adjacent stands with similar soil texture, indicate that different species have had different influences on the concentration of available nutrients in soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: biomass ; litter fall ; litter standing stock ; organic matter budget ; Pinus caribaea plantations ; root biomass ; root production ; secondary forests ; soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The distribution of tree biomass and the allocation of organic matter production were measured in an 11-yr-old Pinus caribaea plantation and a paired broadleaf secondary forest growing under the same climatic conditions. The pine plantation had significantly more mass aboveground than the secondary forest (94.9 vs 35.6 t ha-1 for biomass and 10.5 vs 5.0 t ha-1 for litter), whereas the secondary forest had significantly more fine roots (⩽2 mm diameter) than the pine plantation (10.5 and 1.0 t ha-1, respectively). Standing stock of dead fine roots was higher than aboveground litter in the secondary forest. In contrast, aboveground litter in pine was more than ten times higher than the dead root fraction. Both pine and secondary forests had similar total organic matter productions (19.2 and 19.4 t ha-1 yr-1, respectively) but structural allocation of that production was significantly different between the two forests; 44% of total production was allocated belowground in the secondary forest, whereas 94% was allocated aboveground in pine. The growth strategies represented by fast growth and large structural allocation aboveground, as for pine, and almost half the production allocated belowground, as for the secondary forest, illustrate equally successful, but contrasting growth strategies under the same climate, regardless of soil characteristics. The patterns of accumulation of organic matter in the soil profile indicated contrasting nutrient immobilization and mineralization sites and sources for soil organic matter formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: sclerophylls ; serpentinite-nickel accumulators ; tropical forests ; ultramafic soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The interactions between water and soil nutrient availability in determining leaf nutritional composition and structural features were investigated in forests on serpentine in Maricao and Susua (Puerto Rico). These forests grow under contrasting rainfall regimes: Maricao is a wet forest located at altitudes above 500 m and receiving more than 2500 mm rainfall, while Susua is a humid forest located well below 500 m, with less than 1500 mm rainfall and a well defined dry season. Dominant tree species and soils were analysed for N, P, K, Ca, Mg and Ni. Soils can be differentiated according to their K content (higher in Maricao) and P contents (higher in Susua). Mature leaves of both forests have sclerophyllous characteristics as judged from the Specific Leaf Areas (〈80 cm2 g-1) and low P contents. Leaf area development is strongly correlated with leaf N and P contents in both forests, but Maricao samples appear to be more limited by P availability. In concordance with soil values, the Susua leaf sample set has significantly higher contents of P, but lower contents of K when compared with the Maricao sample set. Analyses of soluble K, Ca, and Mg reveal strong physiological selectivity in the absorption of these cations. K/Ca and Ca/Mg ratios are markedly higher in the soluble leaf extracts than in the soil extracts. It seems that restriction to vegetation development in the serpentine areas investigated are more related to nutritional deficiencies and not to high contents of either Mg or Ni in the upper soil layers. Only two strong Ni accumulators were found, Cassine xylocarpa (1.2 μmol Ni g-1 dry mass or 70 μg g-1) from Susua, and Chionanthus domingensis (12.2 μmol g-1, or about 700 μg g-1) from Maricao. These species are not restricted to serpentine areas in Puerto Rico.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2006-04-21
    Print ISSN: 0168-2563
    Electronic ISSN: 1573-515X
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2009-08-19
    Print ISSN: 1385-0237
    Electronic ISSN: 1573-5052
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...