ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (5)
  • Binding Sites  (3)
  • *Arabidopsis Proteins
  • American Association for the Advancement of Science (AAAS)  (6)
  • 1995-1999  (3)
  • 1990-1994  (3)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (6)
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-26
    Description: Heme, the iron-containing cofactor essential for the activity of many enzymes, is incorporated into its target proteins by unknown mechanisms. Here, an Escherichia coli hemoprotein, CcmE, was shown to bind heme in the bacterial periplasm by way of a single covalent bond to a histidine. The heme was then released and delivered to apocytochrome c. Thus, CcmE can be viewed as a heme chaperone guiding heme to its appropriate biological partner and preventing illegitimate complex formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schulz, H -- Hennecke, H -- Thony-Meyer, L -- New York, N.Y. -- Science. 1998 Aug 21;281(5380):1197-200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mikrobiologisches Institut, Eidgenossische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9712585" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apoproteins/metabolism ; Bacterial Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Cytochrome c Group/*metabolism ; Cytochromes c ; Escherichia coli/genetics/*metabolism ; Heme/*metabolism ; Histidine/metabolism ; Mass Spectrometry ; Membrane Proteins/chemistry/genetics/*metabolism ; Molecular Chaperones/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-05-22
    Description: Multifunctional calcium-calmodulin-dependent protein kinase (CaM kinase) transduces transient elevations in intracellular calcium into changes in the phosphorylation state and activity of target proteins. By fluorescence emission anisotropy, the affinity of CaM kinase for dansylated calmodulin was measured and found to increase 1000 times after autophosphorylation of the threonine at position 286 of the protein. Autophosphorylation markedly slowed the release of bound calcium-calmodulin; the release time increased from less than a second to several hundred seconds. In essence, calmodulin is trapped by autophosphorylation. The shift in affinity does not occur in a site-directed mutant in which threonine at position 286 has been replaced by a non-phosphorylatable amino acid. These experiments demonstrate the existence of a new state in which calmodulin is bound to CaM kinase even though the concentration of calcium is basal. Calmodulin trapping provides for molecular potentiation of calcium transients and may enable detection of their frequency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, T -- Hanson, P I -- Stryer, L -- Schulman, H -- GM 40600/GM/NIGMS NIH HHS/ -- GM24032/GM/NIGMS NIH HHS/ -- MH45324/MH/NIMH NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1992 May 22;256(5060):1199-202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1317063" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding, Competitive ; Calcium/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases ; Calmodulin/*metabolism ; Cell Line ; Egtazic Acid/pharmacology ; Kinetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phosphorylation ; Protein Binding ; Protein Kinases/genetics/*metabolism ; Recombinant Proteins/metabolism ; Spectrometry, Fluorescence ; Threonine ; Time Factors ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-09-01
    Description: A mutated cyclin-dependent kinase 4 (CDK4) was identified as a tumor-specific antigen recognized by HLA-A2. 1-restricted autologous cytolytic T lymphocytes (CTLs) in a human melanoma. The mutated CDK4 allele was present in autologous cultured melanoma cells and metastasis tissue, but not in the patient's lymphocytes. The mutation, an arginine-to-cysteine exchange at residue 24, was part of the CDK4 peptide recognized by CTLs and prevented binding of the CDK4 inhibitor p16INK4a, but not of p21 or of p27KIP1. The same mutation was found in one additional melanoma among 28 melanomas analyzed. These results suggest that mutation of CDK4 can create a tumor-specific antigen and can disrupt the cell-cycle regulation exerted by the tumor suppressor p16INK4a.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolfel, T -- Hauer, M -- Schneider, J -- Serrano, M -- Wolfel, C -- Klehmann-Hieb, E -- De Plaen, E -- Hankeln, T -- Meyer zum Buschenfelde, K H -- Beach, D -- New York, N.Y. -- Science. 1995 Sep 1;269(5228):1281-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medizinische Klinik und Poliklinik, Johannes Gutenberg-Universitat, Mainz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7652577" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Carrier Proteins/metabolism/*pharmacology ; *Cell Cycle Proteins ; Cell Line ; Cloning, Molecular ; Cyclin-Dependent Kinase 4 ; Cyclin-Dependent Kinase Inhibitor p15 ; Cyclin-Dependent Kinase Inhibitor p16 ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclin-Dependent Kinase Inhibitor p27 ; *Cyclin-Dependent Kinases ; Cyclins/metabolism/pharmacology ; HLA-A2 Antigen/immunology ; Humans ; Melanoma/enzymology/*immunology ; Microtubule-Associated Proteins/metabolism/pharmacology ; Molecular Sequence Data ; Point Mutation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/antagonists & ; inhibitors/genetics/*immunology/metabolism ; *Proto-Oncogene Proteins ; T-Lymphocytes, Cytotoxic/*immunology ; Transfection ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-10-21
    Description: The structure of the heterodimeric flavocytochrome c sulfide dehydrogenase from Chromatium vinosum was determined at a resolution of 2.53 angstroms. It contains a glutathione reductase-like flavin-binding subunit and a diheme cytochrome subunit. The diheme cytochrome folds as two domains, each resembling mitochondrial cytochrome c, and has an unusual interpropionic acid linkage joining the two heme groups in the interior of the subunit. The active site of the flavoprotein subunit contains a catalytically important disulfide bridge located above the pyrimidine portion of the flavin ring. A tryptophan, threonine, or tyrosine side chain may provide a partial conduit for electron transfer to one of the heme groups located 10 angstroms from the flavin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Z W -- Koh, M -- Van Driessche, G -- Van Beeumen, J J -- Bartsch, R G -- Meyer, T E -- Cusanovich, M A -- Mathews, F S -- GM-20530/GM/NIGMS NIH HHS/ -- GM-21277/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):430-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939681" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatium/*enzymology ; Computer Graphics ; Crystallography, X-Ray ; Cytochrome c Group/*chemistry ; Electron Transport ; Flavin-Adenine Dinucleotide/metabolism ; Hydrogen Bonding ; Models, Molecular ; Oxidoreductases/*chemistry ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-06-14
    Description: Yeast galactokinase (Gal1p) is an enzyme and a regulator of transcription. In addition to phosphorylating galactose, Gal1p activates Gal4p, the activator of GAL genes, but the mechanism of this regulation has been unclear. Here, biochemical and genetic evidence is presented to show that Gal1p activates Gal4p by direct interaction with the Gal4p inhibitor Gal80p. Interaction requires galactose, adenosine triphosphate, and the regulatory function of Gal1p. These data indicate that Gal1p-Gal80p complex formation results in the inactivation of Gal80p, thereby transmitting the galactose signal to Gal4p.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zenke, F T -- Engles, R -- Vollenbroich, V -- Meyer, J -- Hollenberg, C P -- Breunig, K D -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1662-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Mikrobiologie, Heinrich-Heine-Universitat Dusseldorf, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658143" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Coenzymes/metabolism ; DNA-Binding Proteins ; Fungal Proteins/*metabolism ; Galactokinase/genetics/*metabolism ; Galactose/*metabolism ; Kluyveromyces/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Repressor Proteins/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-06-03
    Description: The plant hormone abscisic acid (ABA) mediates various responses such as stomatal closure, the maintenance of seed dormancy, and the inhibition of plant growth. All three responses are affected in the ABA-insensitive mutant abi1 of Arabidopsis thaliana, suggesting that an early step in the signaling of ABA is controlled by the ABI1 locus. The ABI1 gene was cloned by chromosome walking, and a missense mutation was identified in the structural gene of the abi1 mutant. The ABI1 gene encodes a protein with high similarity to protein serine or threonine phosphatases of type 2C with the novel feature of a putative Ca2+ binding site. Thus, the control of the phosphorylation state of cell signaling components by the ABI1 product could mediate pleiotropic hormone responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, K -- Leube, M P -- Grill, E -- New York, N.Y. -- Science. 1994 Jun 3;264(5164):1452-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Sciences, Swiss Federal Institute of Technology, Zurich.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8197457" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*pharmacology ; Amino Acid Sequence ; Arabidopsis/enzymology/genetics/*metabolism ; *Arabidopsis Proteins ; Binding Sites ; Calcium/metabolism ; Chromosome Walking ; Cloning, Molecular ; Genes, Plant ; Genetic Markers ; Molecular Sequence Data ; Mutation ; Phosphoprotein Phosphatases/chemistry/genetics/*metabolism ; Plants, Genetically Modified ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...