ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (7)
  • *Bacterial Physiological Phenomena
  • American Association for the Advancement of Science (AAAS)  (8)
  • American Association of Petroleum Geologists (AAPG)
  • Cambridge University Press
  • 1995-1999  (5)
  • 1990-1994  (3)
  • 1965-1969
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (8)
  • American Association of Petroleum Geologists (AAPG)
  • Cambridge University Press
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-02
    Description: Analysis of viral and bacterial pathogenesis has revealed common themes in the ways in which plants and animals respond to pathogenic agents. Pathogenic bacteria use macromolecule delivery systems (types III and IV) to deliver microbial avirulence proteins and transfer DNA-protein complexes directly into plant cells. The molecular events that constitute critical steps of plant-pathogen interactions seem to involve ligand-receptor mechanisms for pathogen recognition and the induction of signal transduction pathways in the plant that lead to defense responses. Unraveling the molecular basis of disease resistance pathways has laid a foundation for the rational design of crop protection strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, B -- Zambryski, P -- Staskawicz, B -- Dinesh-Kumar, S P -- GM45244/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 2;276(5313):726-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9115193" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics/microbiology/physiology/virology ; Bacteria/genetics ; *Bacterial Physiological Phenomena ; Biological Evolution ; Fungi/physiology ; Genes, Plant ; Immunity, Innate ; Plant Diseases/*microbiology ; Plant Physiological Phenomena ; Plant Proteins/*physiology ; Plants/genetics/*microbiology/virology ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-08-08
    Description: TRAIL (also called Apo2L) belongs to the tumor necrosis factor family, activates rapid apoptosis in tumor cells, and binds to the death-signaling receptor DR4. Two additional TRAIL receptors were identified. The receptor designated death receptor 5 (DR5) contained a cytoplasmic death domain and induced apoptosis much like DR4. The receptor designated decoy receptor 1 (DcR1) displayed properties of a glycophospholipid-anchored cell surface protein. DcR1 acted as a decoy receptor that inhibited TRAIL signaling. Thus, a cell surface mechanism exists for the regulation of cellular responsiveness to pro-apoptotic stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheridan, J P -- Marsters, S A -- Pitti, R M -- Gurney, A -- Skubatch, M -- Baldwin, D -- Ramakrishnan, L -- Gray, C L -- Baker, K -- Wood, W I -- Goddard, A D -- Godowski, P -- Ashkenazi, A -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, South San Francisco, CA 94080-4918, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242611" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Apoptosis ; Apoptosis Regulatory Proteins ; Cell Membrane/metabolism ; Cells, Cultured ; GPI-Linked Proteins ; Glycosylphosphatidylinositols/metabolism ; HeLa Cells ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; NF-kappa B/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Signal Transduction ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor Decoy Receptors ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-12-07
    Description: In the development of multicellular organisms a diversity of cell types differentiate at specific positions. Spacing patterns, in which an array of two or more cell types forms from a uniform field of cells, are a common feature of development. Identical precursor cells may adopt different fates because of competition and inhibition between them. Such a pattern in the developing Drosophila eye is the evenly spaced array of R8 cells, around which other cell types are subsequently recruited. Genetic studies suggest that the scabrous mutation disrupts a signal produced by R8 cells that inhibits other cells from also becoming R8 cells. The scabrous locus was cloned, and it appears to encode a secreted protein partly related to the beta and gamma chains of fibrinogen. It is proposed that the sca locus encodes a lateral inhibitor of R8 differentiation. The roles of the Drosophila EGF-receptor homologue (DER) and Notch genes in this process were also investigated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, N E -- Mlodzik, M -- Rubin, G M -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1370-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2175046" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Cell Differentiation ; DNA Transposable Elements ; Drosophila/anatomy & histology/*genetics/growth & development ; *Drosophila Proteins ; Eye/anatomy & histology/growth & development ; Fibrinogen/*genetics ; *Glycoproteins ; Humans ; Molecular Sequence Data ; Mosaicism ; *Mutation ; Phenotype ; Proteins/*genetics ; Receptor, Epidermal Growth Factor/genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-05-04
    Description: The Drosophila Shaker gene on the X chromosome has three sister genes, Shal, Shab, and Shaw, which map to the second and third chromosomes. This extended gene family encodes voltage-gated potassium channels with widely varying kinetics (rate of macroscopic current activation and inactivation) and voltage sensitivity of steady-state inactivation. The differences in the currents of the various gene products are greater than the differences produced by alternative splicing of the Shaker gene. In Drosophila, the transient (A current) subtype of the potassium channel (Shaker and Shal) and the delayed-rectifier subtype (Shab and Shaw) are encoded by homologous genes, and there is more than one gene for each subtype of channel. Homologs of Shaker, Shal, Shab, and Shaw are present in mammals; each Drosophila potassium-channel gene may be represented as a multigene subfamily in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wei, A -- Covarrubias, M -- Butler, A -- Baker, K -- Pak, M -- Salkoff, L -- 1 RO1-NS24785-01/NS/NINDS NIH HHS/ -- GMO 7200/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 May 4;248(4955):599-603.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2333511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Chromosome Mapping ; Drosophila/*genetics ; Drosophila Proteins ; Female ; Membrane Proteins/*genetics/physiology ; Mice/*genetics ; Molecular Sequence Data ; *Multigene Family ; Oocytes/physiology ; Potassium Channels/*physiology ; Sequence Homology, Nucleic Acid ; Shab Potassium Channels ; Transcription, Genetic ; *X Chromosome ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-12-15
    Description: Ubiquitin is a highly conserved polypeptide found in all eukaryotes. The major function of ubiquitin is to target proteins for complete or partial degradation by a multisubunit protein complex called the proteasome. Here, the Drosophila fat facets gene, which is required for the appropriate determination of particular cells in the fly eye, was shown to encode a ubiquitin-specific protease (Ubp), an enzyme that cleaves ubiquitin from ubiquitin-protein conjugates. The Fat facets protein (FAF) acts as a regulatory Ubp that prevents degradation of its substrate by the proteasome. Flies bearing fat facets gene mutations were used to show that a Ubp is cell type--and substrate-specific and a regulator of cell fate decisions in a multicellular organism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Y -- Baker, R T -- Fischer-Vize, J A -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1828-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Texas, Austin 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525378" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Cell Differentiation/genetics ; Cysteine/metabolism ; Drosophila/embryology/enzymology/genetics ; Endopeptidases/genetics/*metabolism ; Escherichia coli ; Eye/embryology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligodeoxyribonucleotides ; Recombinant Fusion Proteins/genetics/metabolism ; Ubiquitins/*metabolism ; beta-Galactosidase/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-05-05
    Description: Plant breeders have used disease resistance genes (R genes) to control plant disease since the turn of the century. Molecular cloning of R genes that enable plants to resist a diverse range of pathogens has revealed that the proteins encoded by these genes have several features in common. These findings suggest that plants may have evolved common signal transduction mechanisms for the expression of resistance to a wide range of unrelated pathogens. Characterization of the molecular signals involved in pathogen recognition and of the molecular events that specify the expression of resistance may lead to novel strategies for plant disease control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Staskawicz, B J -- Ausubel, F M -- Baker, B J -- Ellis, J G -- Jones, J D -- New York, N.Y. -- Science. 1995 May 5;268(5211):661-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of California, Berkeley 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7732374" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Genes, Plant ; Genetic Engineering ; Immunity, Innate/genetics ; Molecular Sequence Data ; Plant Diseases/*genetics/microbiology ; Signal Transduction ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-12-22
    Description: Plasmodesmata are intercellular organelles in plants that establish cytoplasmic continuity between neighboring cells. Microinjection studies showed that plasmodesmata facilitate the cell-to-cell transport of a plant-encoded transcription factor, KNOTTED1 (KN1). KN1 can also mediate the selective plasmodesmal trafficking of kn1 sense RNA. The emerging picture of plant development suggests that cell fate is determined at least in part by supracellular controls responding to cellular position as well as lineage. One of the mechanisms that enables the necessary intercellular communication appears to involve transfer of informational molecules (proteins and RNA) through plasmodesmata.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lucas, W J -- Bouche-Pillon, S -- Jackson, D P -- Nguyen, L -- Baker, L -- Ding, B -- Hake, S -- New York, N.Y. -- Science. 1995 Dec 22;270(5244):1980-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, University of California, Davis 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8533088" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; *Cell Communication ; Homeodomain Proteins/*metabolism ; Molecular Sequence Data ; Organelles/*metabolism ; Plant Proteins/*metabolism ; Plant Viral Movement Proteins ; Plants/*metabolism/ultrastructure ; Plants, Toxic ; RNA, Plant/genetics/*metabolism ; RNA, Viral/genetics/metabolism ; Tobacco/metabolism/ultrastructure ; Viral Proteins/metabolism ; Zea mays/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-06-04
    Description: Biological variability of human immunodeficiency virus type-1 (HIV-1) is involved in the pathogenesis of acquired immunodeficiency syndrome (AIDS). Syncytium-inducing (SI) HIV-1 variants emerge in 50 percent of infected individuals during infection, preceding accelerated CD4+ T cell loss and rapid progression to AIDS. The V1 to V2 and V3 region of the viral envelope glycoprotein gp120 contained the major determinants of SI capacity. The configuration of a hypervariable locus in the V2 domain appeared to be predictive for non-SI to SI phenotype conversion. Early prediction of HIV-1 phenotype evolution may be useful for clinical monitoring and treatment of asymptomatic infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groenink, M -- Fouchier, R A -- Broersen, S -- Baker, C H -- Koot, M -- van't Wout, A B -- Huisman, H G -- Miedema, F -- Tersmette, M -- Schuitemaker, H -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Viro-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502996" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/microbiology ; Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Consensus Sequence ; Genetic Variation ; Giant Cells/microbiology ; HIV Envelope Protein gp120/*chemistry ; HIV Seropositivity/microbiology ; HIV-1/*chemistry/*genetics/pathogenicity ; Humans ; Male ; Molecular Sequence Data ; Phenotype ; Protein Conformation ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...