ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 92 (1988), S. 4961-4964 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 285-291 
    ISSN: 1432-0789
    Keywords: Key words Chrysanthemum ; Rhizosphere ; Rhizobacteria ; Root age ; Reference unit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The number of bacteria was determined during the growth of chrysanthemum plants on young (tip) and old (base) root parts. We assessed if the same conclusions could be drawn on the dynamics of bacterial populations during plant development when different reference units were used to express the bacterial counts. The results indicated that the total number of bacteria on the base decreased significantly during plant development, when expressed per root length, per root fresh weight or per root surface. The number of bacteria on the tip only decreased significantly when expressed per root length. Using the unit of dry weight of adhering soil, contradictory results were obtained for both base and tip; in general, the number of bacteria increased significantly during plant development. Thus, different reference units may lead to different conclusions. Root surface seemed to be the best unit to use, but the use of this unit requires time-consuming measurements. Regression analyses indicated that the reference unit "root surface" was highly correlated with root fresh weight (R 2=93%). Thus, once this relation is determined, the less time-consuming unit can be measured in the experimental work. To analyse the data, the colony-forming units should be expressed per root surface. Besides bacterial numbers during plant development, we assessed whether the bacterial populations collected showed different growth rates on agar plates. The growth rates of bacteria from the tip and base and different development stages of the plants showed differences, indicating differences in the metabolic state of the collected populations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 126-132 
    ISSN: 1432-0789
    Keywords: Residual soil 14C ; Microbial biomass ; Root-derived organic matter ; Fluorescent pseudomonads ; Rhizosphere ; Nutrient levels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Maize plants were grown for 42 days in a sandy soil at two different mineral nutrient levels, in an atmosphere containing 14CO2. The 14C and total carbon contents of shoots, roots, soil and soil microbial biomass were measured 28, 35 and 42 days after germination. Relative growth rates of shoots and roots decreased after 35 days at the lower nutrient level, but were relatively constant at the higher nutrient level. In the former treatment, 2% of the total 14C fixed was retained as a residue in soil at all harvests while at the higher nutrient level up to 4% was retained after 42 days. Incorporation of 14C into the soil microbial biomass was close to its maximum after 35 days at the lower nutrient level, but continued to increase at the higher level. Generally a good agreement existed between microbial biomass, 14C contents and numbers of fluorescent pseudomonads in the rhizosphere. Numbers of fluorescent pseudomonads in the rhizosphere were maximal after 35 days at the lower nutrient level and continued to increase at the higher nutrient level. The proportions of the residual 14C in soil, incorporated in the soil microbial biomass, were 28% to 41% at the lower nutrient level and 20%6 – 30% at the higher nutrient level. From the lower nutrient soil 18%6 – 52%6 of the residual soil 14C could be extracted with 0.5 N K2SO4, versus 14%6 – 16% from the higher nutrient soil. Microbial growth in the rhizosphere seemed directly affected by the depletion of mineral nutrients while plant growth and the related production of root-derived materials continued.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 4 (1987), S. 41-46 
    ISSN: 1432-0789
    Keywords: Competition ; Migration ; Colonization potential ; Replica printing ; Triticum aestivum ; Pseudomonas fluorescens ; Bacillus subtilis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Colonization patterns of Pseudomonas fluorescens and Bacillus subtilis on roots of wheat seedlings growing on water agar were studied qualitatively by replica printing and quantitatively by the plate count method. The results indicated a stronger colonization potential for P. fluorescens (up to 107 cfu/cm root) than for B. subtilis (up to 105 cfu/cm root). Although the numbers of both species were lower when inoculated together, the observed colonization patterns on the roots were comparable to those found with single inoculations. For none of these bacteria was active migration along the root surface in any direction observed, indicating that distal positions are reached mainly by a passive displacement on the root tip and elongating cells. Ecological implications of the observed phenomena are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 13-18 
    ISSN: 1432-0789
    Keywords: Bacteria ; Protozoa ; Predation ; Nitrogen ; Mineralization ; Plant uptake ; Soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Microbial N from 15N-labelled bacterial biomass was investigated in a microcosm experiment, in order to determine its availability to wheat plants. Sterilized soil was inoculated with either bacteria (Pseudomonas aeruginosa alone or with a suspension of a natural bacterial population from the soil) or bacteria and protozoa to examine the impact of protozoa. Plant biomass, plant N, soil inorganic N and bacterial and protozoan numbers were determined after 14 and 35 days of incubation. The protozoa reduced bacterial numbers in soil by a factor of 8, and higher contents of soil inorganic N were found in their presence. Plant uptake of N increased by 20010 in the presence of protozoa. Even though the total plant biomass production was not affected, the shoot: root ratios increased in the presence of protozoa, which is considered to indicate an improved plant nutrient supply. The presence of protozoa resulted in a 65010 increase in mineralization and uptake of bacterial 15N by plants. This effect was more pronounced than the protozoan effect on N derived from soil organic matter. It is concluded that grazing by protozoa strongly stimulates the mineralization and turnover of bacterial N. The mineralization of soil organic N was also shown to be promoted by protozoa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: computer simulation models ; experimental validation ; long-term extrapolation ; manure ; soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A computer simulation model for long-term soil organic matter dynamics was developed and evaluated with data from long-term field trials in Belgium, Germany and The Netherlands. The model distinguishes four pools of soil organic components (including a microbial biomass pool) with different chemical properties. Transformation rates are described by (pseudo) first order kinetics. Effects of temperature and soil moisture tension were included. Simulation results were in agreement with experimental data from arable farming practices where common input rates were applied. Model calculations overestimated soil organic matter levels when green manures or exceptionally high input rates were applied. Inadequate experimental estimations of organic matter input rates and insufficient modelling of the soil preservation capacity for organic matter and biomass are likely reasons. After changes in the soil organic matter-input management it may take more than a century to reach new equilibrium levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 115 (1989), S. 179-188 
    ISSN: 1573-5036
    Keywords: microbial biomass ; organic matter decomposition ; rhizosphere ; root material production ; soil nutrient status ; soil structure and texture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The flow of carbon from plant roots through the microbial biomass is one of the key processes in terrestrial ecosystems. Roots release considerable amounts of organic materials which are utilized by microbes as substrate for biosynthesis and energy supply. The fate of photosynthates and other organic material in the soil-root environment under different conditions was studied using14C-tracers. Soil structure and texture had a large effect on the turnover of the14C-labelled materials through the microbial biomas. Finer, clayey soils tended to be more ‘preservative’ than coarser, sandy soils,i.e., larger amounts of14C were incorporated in microbial biomass and soil organic matter fractions in clayey soils than in sandy soils. The soil nutrient status also appeared to affect organic matter turnover. At limiting plant-nutrient concentrations the utilization of14C-labelled photosynthates seem to be hampered. Plant roots influenced the transformation of glucose and crop residues and the effect was attributed to plant-induced changes in mineral nutrient status. The mechanisms of this process and the consequences are discussed. A number of areas for future research are identified, including the potentials for manipulating rhizodeposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-01-01
    Print ISSN: 0743-7463
    Electronic ISSN: 1520-5827
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1987-05-01
    Print ISSN: 0178-2762
    Electronic ISSN: 1432-0789
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-01-01
    Print ISSN: 0178-2762
    Electronic ISSN: 1432-0789
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...