ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
Collection
Years
Year
  • 1
    Publication Date: 2002-05-01
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Progress in understanding of the role of water in global weather and climate is currently limited by our knowledge of the spatial and temporal variability of primary hydrological fields such as precipitation and evaporation. The Tropical Rainfall Measuring Mission (TRMM) has recently demonstrated that use of microwave-based rainfall observations from space in data assimilation can provide better climate data sets and improve short-range weather forecasting. At NASA, we have been exploring non-traditional approaches to assimilating TRMM Microwave Imager (TMI) and Special Sensor Microwavehager (SSM/I) surface rain rate and latent heating profile information in global systems. In this talk we show that assimilating microwave rain rates using a continuous variational assimilation scheme based on moisture tendency corrections improves quantitative precipitation estimates (QPE) and related clouds, radiation energy fluxes, and large-scale circulations in the Goddard Earth Observing System (GEOS) reanalyses. Short-range forecasts initialized with these improved analyses also yield better QPE scores and storm track predictions for Hurricanes Bonnie and Floyd. We present a status report on current efforts to assimilate convective and stratiform latent heating profile information within the general variational framework of model parameter estimation to seek further improvements. Within the next 5 years, there will be a gradual increase in microwave rain products available from operational and research satellites, culminating to a target constellation of 9 satellites to provide global rain measurements every 3 hours with the proposed Global Precipitation Measurement (GPM) mission in 2007/2008. Based on what has been learned from TRMM, there is a high degree of confidence that these observations can play a'major role in improving weather forecasts and producing better global datasets for understanding the Earth's water and energy cycle. The key to success is to adopt an integrated approach to retrieval, validation, modeling, and data assimilation in a coordinated end-to-end observation-application program.
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society Annual Meeting; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Understanding the Earth's climate and how it responds to climate perturbations requires knowledge of how atmospheric moisture, clouds, latent heating, the large-scale circulation and energy fluxes vary with changing climatic conditions. The physical process linking these climate elements is precipitation. Accurate knowledge of how precipitation varies in space and time and how it couples with other atmospheric variables is essential for understanding the global water and energy cycle. In recent years, TRMM data products have played a key role in advancing the field of data assimilation to provide better global analyses for climate research and numerical weather prediction. TRMM research has demonstrated the effectiveness of microwave-based rainfall and total precipitable water (TPW) observations in improving the quality of assimilated datasets and upgrading forecast skills. TRMM latent heating products have also stimulated experimentation with innovative techniques to use this type of information to improve global analyses. We discuss strategies of assimilating TRMM observations at NASA s Data Assimilation Office and present results on the impact assimilating TRMM data on the Goddard Earth Observing System (GEOS) analyses and forecast capabilities.
    Keywords: Meteorology and Climatology
    Type: International Tropical Rainfall Measuring Mission (TRMM) Science Conference; Jul 22, 2002 - Jul 26, 2002; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...