ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004
    Keywords: CC 1/1 ; Coordinating Committee ; Himalayas
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: Water-ice in the Martian atmosphere was first identified in the Mariner 9 Infrared Interferometer Spectrometer (IRIS) spectra. The Viking Imaging Subsystem (VIS) instruments aboard the Viking orbiter also observed water-ice clouds and hazes in the Martian atmosphere. The MGS TES instrument is an infrared inferometer/spectrometer which covers the spectral range 6-50 micron with a selectable sampling resolution of either 5 or 10 per cm. Using the relatively independent and distinct spectral signatures for dust and water-ice, these two retrieved quantities have been retrieved simultaneously. Although the interrelations among the two quantities have been analyzed by Smith et al. and the retrievals are thought to be robust, understanding the impact of each quantity on the other during their retrievals as well as the impact from the surface for retrievals is important for correctly interpreting the science, and therefore requires close examination. An understanding of the correlation or a-correlation between dust and water-ice would aid in understanding the physical processes responsible for the transport of aerosols in the Martian atmosphere. In this presentation, we present an investigation of the correlation between water-ice and dust in the MGS TES data set.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Mars Polar Processes: Land and Sky; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: We present results from the analysis of X-ray power density spectra and coherence when GRS 1915+105 is in soft states. We use three data sets that belong to mu, phi, and delta classes as found in the work of Belloni et al. We find that the power density spectra appear t o be complex, with several features between 0.01 and 10 Hz. The coherence deviates from unity above a characteristic frequency. We discuss our results from different models. The corona size in the sphere-disk model implied by this break frequency is on the order of 10(exp 4) GM/c(exp 2), which is unphysical. Our results are more consistent with the prediction of the model of a planar corona sustained by magnetic flares, in which the characteristic frequency is associated with the longest timescale of an individual flare, which is about 8 s.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 584; 1; L23 - L26
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude, near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.
    Keywords: Astronautics (General)
    Type: AAS Paper 00-163 , Space Flight Mechanics Meeting; Jan 23, 2000 - Jan 26, 2000; Clearwater, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2000-210095 , L-17946 , NAS 1.15:210095
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...