ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.
    Keywords: Inorganic, Organic and Physical Chemistry
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: Temperature-dependent near-IR photodissociation spectra were obtained for several vibrational overtone transitions of peroxynitric acid (HNO4) with a tunable OPO photolysis/OH laser-induced-fluorescence system. Band-integrated photodissociation cross-sections (definity integral of sigma(sub diss)), determined relative to that for the 3nu(sub 1), OH stretching overtone, were measured for three dissociative bands. Assuming unit quantum efficiency for photodissociation of 3nu(sub 1), we find 2nu(sub 1) + nu(sub 3)(8242/cm) = (1.21 x 10(exp -20) (independent of temperature), 2nu(sub 1) (6900/cm) = 4.09 x 10(exp 18) * e(sup (-826,5/T)) (295 K greater than T greater than 224 K), and nu(sub 1) + 2nu(sub 3) (6252/cm) = 1.87 x 10(exp -19) * e(sup (- 1410.7/T)) (278 K greater than T greater than 240 K) sq cm/molecule cm. The photodissociation cross-sections are independent of pressure over the range 2 to 40 Torr. Temperature-dependent quantum yields (phi) for these transitions were obtained using integrated absorption cross-sections (definity integral of sigma(sub abs)) of HNO4 overtone vibrations measured with a FTIR spectrometer. In the atmosphere, photodissociation in the infrared is dominated by excitation of the first overtone of the OH stretching vibration (2nu((sub 1)). Inclusion of all dissociative HNO4 overtone and combination transitions yields a daytime IR photolysis rate of approximately 1 x 10(esp -1)/s. This process significantly shortens the estimated lifetime of HNO4 in the upper troposphere and lower stratosphere.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Journal of Physical Chemistry A
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: The cubic to hexagonal phase transformation in water ice (I(sub c) yields I(sub h)) is used to measure the extent to which surface structure and impurities control bulk properties. In pure crystalline (I(sub c)) water ice nanoclusters and in thin-films of impure water ice, I(sub c) yields I(sub h) occurs at lower temperatures than in thin-films of pure water ice. The disordered surface of the 20 nm diameter nanoclusters promotes transformations or reactions which would otherwise be kinetically hindered. Likewise, impurities such as methanol introduce defects into the ice network, thereby allowing sluggish structural transitions to proceed. Such surface-related phenomena play an important role in promoting chemical reactions on interstellar ice grains within cold molecular clouds, where the first organic compounds are formed.
    Keywords: Inorganic, Organic and Physical Chemistry
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...