ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (13)
  • Man/System Technology and Life Support  (7)
  • Oceanography  (5)
  • 2000-2004  (25)
Collection
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Uchu seibutsu kagaku (ISSN 0914-9201); Volume 15; 3; 232-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) Mini-Module, a Space Shuttle middeck locker payload which supports a variety of aquatic inhabitants (fish, snails, plants and bacteria) in an enclosed 8.6 L chamber, was tested for its biological stability in microgravity. The aquatic plant, Ceratophyllum demersum L., was critical for the vitality and functioning of this artificial mini-ecosystem. Its photosynthetic pigment concentrations were of interest due to their light harvesting and protective functions. "Post-flight" chlorophyll and carotenoid concentrations within Ceratophyllum apical segments were directly related to the quantities of light received in the experiments, with microgravity exposure (STS-89) failing to account for any significant deviation from ground control studies. Published by Elsevier Science Ltd on behalf of COSPAR.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); 31; 1; 211-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Due to the discrepancy in metabolic sodium (Na) requirements between plants and animals, cycling of Na between humans and plants is limited and critical to the proper functioning of bio-regenerative life support systems, being considered for long-term human habitats in space (e.g., Martian bases). This study was conducted to determine the effects of limited potassium (K) on growth, Na uptake, photosynthesis, ionic partitioning, and water relations of red-beet (Beta vulgaris L. ssp. vulgaris) under moderate Na-saline conditions. Two cultivars, Klein Bol, and Ruby Queen were grown for 42 days in a growth chamber using a re-circulating nutrient film technique where the supplied K levels were 5.0, 1.25, 0.25, and 0.10 mM in a modified half-strength Hoagland solution salinized with 50 mM NaCl. Reducing K levels from 5.0 to 0.10 mM quadrupled the Na uptake, and lamina Na levels reached -20 g kg-1 dwt. Lamina K levels decreased from -60 g kg-1 dwt at 5.0 mM K to -4.0 g kg-1 dwt at 0.10 mM K. Ruby Queen and Klein Bol responded differently to these changes in Na and K status. Klein Bol showed a linear decline in dry matter production with a decrease in available K, whereas for cv. Ruby Queen, growth was stimulated at 1.25 mM K and relatively insensitive to a further decreases of K down to 0.10 mM. Leaf glycinebetaine levels showed no significant response to the changing K treatments. Leaf relative water content and osmotic potential were significantly higher for both cultivars at low-K treatments. Leaf chlorophyll levels were significantly decreased at low-K treatments, but leaf photosynthetic rates showed no significant difference. No substantial changes were observed in the total cation concentration of plant tissues despite major shifts in the relative Na and K uptake at various K levels. Sodium accounted for 90% of the total cation uptake at the low K levels, and thus Na was likely replacing K in osmotic functions without negatively affecting the plant water status, or growth. Our results also suggest that cv. Ruby Queen can tolerate a much higher Na tissue concentration than cv. Klein Bol before there is any growth reduction. Grant numbers: 12180.
    Keywords: Man/System Technology and Life Support
    Type: Journal of plant nutrition (ISSN 0190-4167); Volume 23; 10; 1449-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Virtually all scenarios for the long-term habitation of spacecraft and other extraterrestrial structures involve plants as important parts of the contained environment that would support humans. Recent experiments have identified several effects of spaceflight on plants that will need to be more fully understood before plant-based life support can become a reality. The International Space Station (ISS) is the focus for the newest phase of space-based research, which should solve some of the mysteries of how spaceflight affects plant growth. Research carried out on the ISS and in the proposed terrestrial facility for Advanced Life Support testing will bring the requirements for establishing extraterrestrial plant-based life support systems into clearer focus.
    Keywords: Man/System Technology and Life Support
    Type: Current opinion in plant biology (ISSN 1369-5266); Volume 5; 3; 258-63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: During the Southern Great Plains experiment, the synthetic aperture radiometer, ESTAR, mapped L-band brightness temperature over a swath about 50 km wide and about 300 km long extending west from Oklahoma City to El Reno and north from the Little Washita River watershed to the Kansas border. ESTAR flew on the NASA P-3B Orion aircraft at an altitude of 7.6 km and maps were made on 7 days between July 8-20, 1999. The brightness temperature maps reflect the patterns of soil moisture expected from rainfall and are consistent with values of soil moisture observed at the research sites within the SGP99 study area and with previous measurements in this area. The data add to the resources for hydrologic modeling in this area and are further validation of the technology represented by ESTAR as a potential path to a future mission to map soil moisture globally from space.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: The spectral window at L-band (1.4 GHz) is important for passive remote sensing of soil moisture and ocean salinity from space, parameters that are needed to understand the hydrologic cycle and ocean circulation. At this frequency, radiation from extraterrestrial (mostly galactic) sources is strong and, unlike the constant cosmic background, this radiation is spatially variable. This paper presents a modern radiometric map of the celestial sky at L-band and a solution for the problem of determining what portion of the sky is seen by a radiometer in orbit. The data for the radiometric map is derived from recent radio astronomy surveys and is presented as equivalent brightness temperature suitable for remote sensing applications. Examples using orbits and antennas representative of those contemplated for remote sensing of soil moisture and sea surface salinity from space are presented to illustrate the signal levels to be expected. Near the galactic plane, the contribution can exceed several Kelvin.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-08
    Description: Sea surface salinity is a key parameter for the study of ocean circulation, global water cycle and hence climate changes.
    Keywords: Earth Resources and Remote Sensing
    Type: International Geoscience and Remote Sensing Symposium; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: A radiometer that uses aperture synthesis in two dimensions is being built as part of research under NASA's Instrument Incubator Program. The instrument development team consists of engineers at the Goddard Space Flight Center, the University of Massachusetts and Quadrant Engineering. This will be an aircraft instrument operating at L-band which builds on the heritage of Electronically Steered Thinned Array Radiometer (ESTAR). This instrument is a next step in the development of aperture synthesis (STAR technology) to meet the goal of a future mission to monitor soil moisture globally from space. The instrument will be designed to fly on the NASA P-3 aircraft in a nadir pointing mode, although other options are possible. The antenna will consist of an array of modules in a rectangular grid. Each module will be comprised of a printed circuit dual-polarized patch and integrated receiver. The distribution of modules within the rectangular array will be adjustable so that several different imaging configurations (e.g. '+', 'Y', 'T') can be employed. The integrated receiver will provide amplification and conversion to infrared (IF). The IF signal will be routed to a processor where the required correlations performed. The I and Q channels will be created digitally and the correlations will be done digitally in this processor. The digitization will be done with sufficient bits to study the effects of quantization on radiometer performance. A computer/controller will store the data for conversion to an image and will also perform temperature control and other data interfacing and housekeeping tasks. The design of critical components has been completed and hardware is being assembled to test the individual elements. It is expected that a complete two-channel correlator will be tested by the end of 2000 and that the complete instrument will be ready for flight tests the following summer (2001).
    Keywords: Earth Resources and Remote Sensing
    Type: Soil Moisture Mission; Sep 11, 2000 - Sep 13, 2000; Las Vegas, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: Microwave remote sensing in the window at 1.413 GHz (L-band) set aside for passive use only is important for monitoring sea surface salinity and soil moisture. These parameters are important for understanding ocean dynamics and energy exchange between the surface and atmosphere, and both NASA and ESA plan to launch satellite sensors to monitor these parameters at L-band (Aquarius, Hydros and SMOS). The ionosphere is an important source of error for passive remote sensing at this frequency. In addition to Faraday rotation, emission from the ionosphere is also a potential source of error at L-band. As an aid for correcting for emission, a regression model is presented that relates ionosphere emission to the integrated electron density (TEC). The goal is to use TEC from sources such as TOPEX, JASON or GPS to obtain estimates of emission over the oceans where the electron density profiles needed to compute emission are not available. In addition, data will also be presented to evaluate the use of the IRI for computing emission over the ocean.
    Keywords: Oceanography
    Type: Advanced in Space Research; Feb 01, 2004 - Feb 28, 2004; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: The salinity of the open ocean is important for understanding ocean circulation, for understanding energy exchange with the atmosphere and for improving models to predict weather and climate. Passive microwave sensors at L-band (1.4 GHz) operating from aircraft have demonstrated that salinity can be measured with sufficient accuracy (1 psu) to be scientifically meaningful in coastal waters. However, measuring salinity in the open ocean presents unresolved issues largely because of the much greater accuracy (approx. 0.1 psu) required to be scientifically viable. In the summer of 1999 a series of measurements called, The Gulf Stream Experiment, were conducted as part of research at the Goddard Space Flight Center to test the potential for passive microwave remote sensing of salinity in the open ocean. The measurements consisted of a compliment of airborne microwave instruments (radiometers and scatterometer) and ships and drifters for surface truth. The study area was a 200 km by 100 km rectangle about 250 km east of Delaware Bay between the continental shelf waters and north wall of the Gulf Stream. The primary passive instruments were the ESTAR radiometer (L-band, H-pol) and the SLFMR radiometer (L-band, V-pol). In addition, the compliment of instruments on the aircraft included a C-band radiometer (ACMR), an ocean wave scatterometer (ROWS) and an infrared radiometer. A GPS backscatter experiment was also part of the package. These instruments were mounted on the NASA P-3 Orion aircraft. Surface salinity measurements were provided by the RN Cape Henlopen and MN Oleander (thermosalinographs) plus salinity and temperature sensors on three surface drifters deployed from the RN Cape Henopen. The primary experiment period was August 26-September 2, 1999. During this period the salinity field within the study area consisted of a gradient on the order of 2-3 psu in the vicinity of the shelf break and a warm core ring with a gradient of 1-2 psu. Detailed maps were made with the airborne sensors on August 28 and 29 and on September 2 flights were made over the surface drifters to look for effects due to a change in surface roughness resulting from the passage of Hurricane Dennis. Preliminary results show a good agreement between the microwave measurements and ship measurements of salinity. The features of the brightness temperature maps correspond well with the features of the salinity field measured by the ship and drifters and a preliminary retrieval of salinity compares well with the ship data.
    Keywords: Oceanography
    Type: Geoscience and Remote Sensing; Jul 24, 2000 - Jul 28, 2000; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...