ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (6)
  • 2000-2004  (6)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 4427-4434 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of flowing metal walls on the resistive wall instabilities is analyzed for a general cylindrically symmetric diffusive pinch configuration. Two types of liquid metal flow are analyzed: a uniform flow which is poloidally symmetric, and a two-stream flow consisting of two opposite streams splitting at the top and merging at the bottom. It is found in both configurations that when the liquid wall flow velocity exceeds a critical value, the resistive wall mode is stabilized. However, for the two-stream flow the critical velocity is several times smaller than that for the uniform flow. Still in a realistic experiment one needs a flow velocity of a few tens m/s to stabilize the resistive wall mode. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results from a series of single-mode, Rayleigh–Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5×1014 W/cm2. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%–7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83–124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This paper reviews the current direct-drive ignition capsule designed for the National Ignition Facility (NIF) [M. D. Campbell and W. J. Hogan, Plasma Phys. Control. Fusion 41, B39 (1999)]. The ignition design consists of a cryogenic deuterium–tritium (DT) shell contained within a very thin CH shell. To maintain shell integrity during the implosion, the target is placed on an isentrope approximately three times that of Fermi-degenerate DT (α=3). One-dimensional studies show that the ignition design is robust. Two-dimensional simulations examine the effects on target performance due to laser imprint, power imbalance, and inner- and outer-target-surface roughness. Results from these studies indicate that the capsule gain can be scaled to the ice/vapor surface deformation at the end of the acceleration stage of the implosion. The physical reason for gain reduction as a function of increasing nonuniformities is examined. Simulations show that direct-drive target gains in excess of 30 can be achieved for an inner-ice-surface roughness of 1 μm rms, an on-target power imbalance of 2% rms, and by using the beam-smoothing technique SSD with 1 THz and two color cycles. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 5257-5267 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A model for the deceleration phase of imploding inertial confinement fusion capsules is derived by solving the conservation equations for the hot spot. It is found that heat flux leaving the hot spot goes back in the form of internal energy and pdV work of the material ablated off the inner shell surface. Though the hot-spot temperature is reduced by the heat conduction losses, the hot-spot density increases due to the ablated material in such a way that the hot-spot pressure is approximately independent of heat conduction. For direct-drive National Ignition Facility-like capsules, the ablation velocity off the shell inner surface is of the order of tens μm/ns, the deceleration of the order of thousands μm/ns2, and the density-gradient scale length of the order a few μm. Using the well-established theory of the ablative Rayleigh–Taylor instability, it is shown that the growth rates of the deceleration phase instability are significantly reduced by the finite ablative flow and the unstable spectrum exhibits a cutoff for mode numbers of about l(approximate)90. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 2439-2448 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It is shown that transonic poloidal flow leads to ideal magnetohydrodynamic tokamak equilibria with radial discontinuities in the density, pressure, and flow velocity profiles. Transonic profiles are defined as having flow velocities ranging from subsonic to supersonic with respect to the poloidal sound speed (csBp/B). The jump of the equilibrium quantities occurs approximately at the sonic surface and its magnitude is of order ε1/2 (ε is the inverse aspect ratio). Because of the large velocity shear at the sonic surface, transonic profiles may improve energy confinement as suggested by current understanding of tokamak plasma turbulence suppression. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 2277-2286 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A model for the deceleration phase and marginal ignition of imploding capsules is derived by solving a set of ordinary differential equations describing the hot-spot energy balance and the shell dynamics including the return shock propagation. It is found that heat flux leaving the hot spot goes back in the form of internal energy and PdV work of the material ablated off the inner-shell surface. Though the hot-spot temperature is reduced by the heat conduction losses, the hot-spot density increases due to the ablated material in such a way that the hot-spot pressure is approximately independent of heat conduction. For hot-spot temperatures exceeding approximately 7 keV, the ignition conditions are not affected by heat conduction losses that are recycled into the hot spot by ablation. Instead, the only significant internal energy loss is due to the hot-spot expansion tamped by the surrounding shell. The change of adiabat induced by the shock is also calculated for marginally igniting shells, and the relation between the in-flight and stagnation adiabats is in general agreement with the numerical fit of LASNEX simulations by Herrmann et al. [Nucl. Fusion 41, 99 (2001)] and the self-similar solution of Kemp et al. [Phys. Rev. Lett. 15, 3336 (2001)]. The minimum kinetic energy required for ignition is also calculated from the same model and shown to be in good agreement with the numerical fit of LASNEX simulations. It is also found that mass ablation leads to a significant reduction of the deceleration phase Rayleigh–Taylor instability growth rates and to the suppression of short wavelength modes. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...