ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 2439-2448 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It is shown that transonic poloidal flow leads to ideal magnetohydrodynamic tokamak equilibria with radial discontinuities in the density, pressure, and flow velocity profiles. Transonic profiles are defined as having flow velocities ranging from subsonic to supersonic with respect to the poloidal sound speed (csBp/B). The jump of the equilibrium quantities occurs approximately at the sonic surface and its magnitude is of order ε1/2 (ε is the inverse aspect ratio). Because of the large velocity shear at the sonic surface, transonic profiles may improve energy confinement as suggested by current understanding of tokamak plasma turbulence suppression. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 5257-5267 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A model for the deceleration phase of imploding inertial confinement fusion capsules is derived by solving the conservation equations for the hot spot. It is found that heat flux leaving the hot spot goes back in the form of internal energy and pdV work of the material ablated off the inner shell surface. Though the hot-spot temperature is reduced by the heat conduction losses, the hot-spot density increases due to the ablated material in such a way that the hot-spot pressure is approximately independent of heat conduction. For direct-drive National Ignition Facility-like capsules, the ablation velocity off the shell inner surface is of the order of tens μm/ns, the deceleration of the order of thousands μm/ns2, and the density-gradient scale length of the order a few μm. Using the well-established theory of the ablative Rayleigh–Taylor instability, it is shown that the growth rates of the deceleration phase instability are significantly reduced by the finite ablative flow and the unstable spectrum exhibits a cutoff for mode numbers of about l(approximate)90. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 3615-3631 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The stability analysis of a high-β toroidal tokamak plasma is carried out in the presence of toroidal flow, finite plasma resistivity, and a surrounding shell of finite electrical resistivity. The beta limits for the n=1 mode are set by the resistive-wall-tearing mode (RWTM), the ideal-wall-tearing mode (IWTM), and the ideal-plasma-resistive-wall mode (IPRWM). Slow plasma rotation suppresses the RWTM while the IPRWM is not directly affected by slow plasma flow. For small plasma resistivity, the IPRWM is stabilized by fast flow only. For large plasma resistivity, the IPRWM only exists in a plasma rotating faster than the typical tearing mode growth rate, and its instability threshold is a complicated function of the wall position and rotation frequency. Very fast rotation can destabilize the ideal kink through centrifugal effects. Furthermore, for b/a (wall radius/plasma radius) below a critical value, a stationary plasma is stable to the n=1 ideal kink and tearing mode for large values of β. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 2122-2128 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The linear stability analysis of accelerated ablation fronts is carried out self-consistently by retaining the effect of finite thermal conductivity. Its temperature dependence along with the density gradient scale length are adjusted to fit the density profiles obtained in the one-dimensional simulations. The effects of diffusive radiation transport are included through the nonlinear thermal conductivity (κ∼Tν). The growth rate is derived by using a boundary layer analysis for Fr(very-much-greater-than)1 (Fr is the Froude number) and a WKB approximation for Fr(very-much-less-than)1. The self-consistent Atwood number depends on the mode wavelength and the power law index for thermal conduction. The analytic growth rate and cutoff wave number are in good agreement with the numerical solutions for arbitrary ν(approximately-greater-than)1. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 4665-4676 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The linear growth rate of the Rayleigh–Taylor instability is calculated for accelerated ablation fronts with small Froude numbers (Fr(very-much-less-than)1). The derivation is carried out self-consistently by including the effects of finite thermal conductivity (κ∼Tν) and density gradient scale length (L). It is shown that long-wavelength modes with wave numbers kL0(very-much-less-than)1 [L0=νν/(ν+1)ν+1 min(L)] have a growth rate γ(approximately-equal-to)(square root of)ATkg−βkVa, where Va is the ablation velocity, g is the acceleration, AT=1+O[(kL0)1/ν], and 1〈β(ν)〈2. Short-wavelength modes are stabilized by ablative convection, finite density gradient, and thermal smoothing. The growth rate is γ=(square root of)αg/L0+c20k4L20V2a−c0k2L0Va for 1(very-much-less-than)kL0(very-much-less-than)Fr−1/3, and γ=c1g/(Vak2L20)−c2kVa for the wave numbers near the cutoff kc. The parameters α and c0−2 mainly depend on the power index ν; and the cutoff kc of the unstable spectrum occurs for kcL0∼Fr−1/3(very-much-greater-than)1. Furthermore, an asymptotic formula reproducing the growth rate at small and large Froude numbers is derived and compared with numerical results. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 1218-1219 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In their comment ,〈citeref RID="R1" STYLE="SUPERIOR"〉1 Gupta and Sinha extend the analysis given by the authors〈citeref RID="R2" STYLE="SUPERIOR"〉2 of stimulated Brillouin scattering in a stationary plasma to a flowing plasma. The authors content that their formula including ion-temperature contribution is more accurate than that of Gupta and Sinha. (AIP)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1402-1414 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The linear stability analysis of accelerated ablation fronts is carried out self-consistently by retaining the effect of finite thermal conductivity. Its temperature dependence is included through a power law (κ∼Tν) with a power index ν(approximately-greater-than)1. The growth rate is derived for Fr(very-much-greater-than)1 (Fr is the Froude number) by using a boundary layer analysis. The self-consistent Atwood number and the ablative stabilization term depend on the mode wavelength, the density gradient scale length, and the power index ν. The analytic formula for the growth rate is shown to be in excellent agreement with the numerical fit of Takabe, Mima, Montierth, and Morse [Phys. Fluids 28, 3676 (1985)] for ν=2.5 and the numerical results of Kull [Phys. Fluids B 1, 170 (1989)] over a large range of ν's. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 4596-4605 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The angular dependence of stimulated Brillouin scattering (SBS) in a finite homogeneous plasma is studied. For parameters typical of inertial confinement fusion experiments, the initial evolution of SBS is well approximated by a one-dimensional model. In the context of this linear model, the threshold intensity of the absolute instability and the steady-state spatial growth rate of the convective instability are both independent of the scattering angle. However, the saturation time of the convective instability exhibits a strong inverse dependence on the scattering angle: Forward SBS always occurs in the transient regime and the intensity of the scattered light is less than that predicted by a steady-state analysis. In particular, no light is emitted in the propagation direction of the incident wave. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results from a series of single-mode, Rayleigh–Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5×1014 W/cm2. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%–7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83–124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 1446-1454 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A simple procedure is developed to determine the Froude number Fr, the effective power index for thermal conduction ν, the ablation-front thickness L0, the ablation velocity Va, and the acceleration g of laser-accelerated ablation fronts. These parameters are determined by fitting the density and pressure profiles obtained from one-dimensional numerical simulations with the analytic isobaric profiles of Kull and Anisimov [Phys. Fluids 29, 2067 (1986)]. These quantities are then used to calculate the growth rate of the ablative Rayleigh–Taylor instability using the theory developed by Goncharov et al. [Phys. Plasmas 3, 4665 (1996)]. The complicated expression of the growth rate (valid for arbitrary Froude numbers) derived by Goncharov et al. is simplified by using reasonably accurate fitting formulas. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...