ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (127)
  • Springer Nature  (101)
  • 2000-2004  (210)
  • 1940-1944  (18)
  • 1
    Publication Date: 2003-08-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 92 (2002), S. 1212-1215 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The growth of surface perturbations due to nonuniformities in the drive laser is an important subject in laser–matter interactions. We present results of experiments using drive lasers with known, single-mode modulations to produce nonuniform shocks that propagate into planar plastic (CH) targets. An optical probe beam is used to measure the arrival of these modulated shocks at various surfaces in the target. Experiments at moderate laser intensities ((approximately-less-than)1013 W/cm2) exhibit behavior predicted by hydrocodes and simple scaling laws. This technique will be used to observe various dynamic effects in laser-produced plasmas and shock-wave propagation. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 483-488 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Degradation of ZnS and Y2O2S cathodoluminescent (CL) phosphors has been studied at 1–4 keV using Auger electron spectroscopy simultaneous with CL. The data are consistent with an electron stimulated surface chemical reaction (ESSCR) which led to destruction of ZnS and formation of a surface nonluminescent ZnO layer as well as injection of oxygen point defects into the near-surface region. In the case of Y2O2S:Eu, the electron beam stimulated removal of S and formation of Y2O3:Eu in the presence of 1×10−6 Torr of oxygen. A model is presented which predicts that degradation by the ESSCR should increase with pressure in the vacuum, depend exponentially on electron dose, increase as the primary beam energy was reduced below 4 keV, and depend upon the type of gas present in the vacuum. These trends were demonstrated from the experimental data. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 12 (2000), S. 2965-2975 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Vortices, oriented in the streamwise direction, play an important role in generating Reynolds shear stresses (and turbulence) for flow over a smooth wall. Many of these have been observed to originate from tiny streamwise vortices, located in the immediate vicinity of the wall. In this paper we identify a different process that forms about 30 percent of the streamwise vortices at locations, away from the wall, in the middle of the viscous wall layer. This is accomplished by examining the changes, with time, of the turbulent field obtained from a direct numerical simulation of turbulent flow in a channel. Streamwise vortices create a shear layer by pumping low momentum fluid from the wall. One or more small spanwise vortices are formed at the top of this layer. These grow in size and rotate in the direction of flow. Previous investigators have suggested that spanwise vortices could have a direct role in the formation of streamwise vortices. This paper describes, in detail, a process by which this is accomplished. Of particular interest is the need to recognize that the shear layer is asymmetric since it is formed by a single streamwise vortex rather than a pair of counter-rotating vortices. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Present-day Z-pinch experiments generate 200 TW peak power, 5–10 ns duration x-ray bursts that provide new possibilities to advance radiation science. The experiments support both the underlying atomic and plasma physics, as well as inertial confinement fusion and astrophysics applications. A typical configuration consists of a sample located 1–10 cm away from the pinch, where it is heated to 10–100 eV temperatures by the pinch radiation. The spectrally-resolved sample-plasma absorption is measured by aiming x-ray spectrographs through the sample at the pinch. The pinch plasma thus both heats the sample and serves as a backlighter. Opacity measurements with this source are promising because of the large sample size, the relatively long radiation duration, and the possibility to measure opacities at temperatures above 100 eV. Initial opacity experiments are under way with CH-tamped NaBr foil samples. The Na serves as a thermometer and absorption spectra are recorded to determine the opacity of Br with a partially-filled M-shell. The large sample size and brightness of the Z pinch as a backlighter are also exploited in a novel method measuring re-emission from radiation-heated gold plasmas. The method uses a CH-tamped layered foil with Al+MgF2 facing the radiation source. A gold backing layer that covers a portion of the foil absorbs radiation from the source and provides re-emission that further heats the Al+MgF2. The Al and Mg heating is measured using space-resolved Kα absorption spectroscopy and the difference between the two regions enables a determination of the gold re-emission. Measurements are also performed at lower densities where photoionization is expected to dominate over collisions. Absorption spectra have been obtained for both Ne-like Fe and He-like Ne, confirming production of the relevant charge states needed to benchmark atomic kinetics models. Refinement of the methods described here is in progress to address multiple issues for radiation science. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Execution and modeling of drive symmetry experiments in gas-filled hohlraums have been pursued to provide both a better understanding of radiation symmetry in such hohlraums and to verify the accuracy of the design tools which are used to predict target performance for the National Ignition Facility (NIF) [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. In this paper, the results of a series of drive symmetry experiments using gas-filled hohlraums at the Nova laser facility [C. Bibeau et al., Appl. Opt. 31, 5799 (1992)] at Lawrence Livermore National Laboratory are presented. A very important element of these experiments was the use of kineform phase plates (KPP) to smooth the Nova beams. The effect of smoothing the ten Nova beams with KPP phase plates is to remove most of the beam bending which had been observed previously, leaving a residual bending of only 1.5°, equivalent to a 35 μm pointing offset at the hohlraum wall. The results show that the symmetry variation with pointing of implosions in gas-filled hohlraums is consistent with time integrated modeling. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results from a series of single-mode, Rayleigh–Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5×1014 W/cm2. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%–7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83–124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Chaos 11 (2001), S. 474-478 
    ISSN: 1089-7682
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Various techniques designed to extract nonlinear characteristics from experimental time series have provided no clear evidence as to whether the electroencephalogram (EEG) is chaotic. Compounding the lack of firm experimental evidence is the paucity of physiologically plausible theories of EEG that are capable of supporting nonlinear and chaotic dynamics. Here we provide evidence for the existence of chaotic dynamics in a neurophysiologically plausible continuum theory of electrocortical activity and show that the set of parameter values supporting chaos within parameter space has positive measure and exhibits fat fractal scaling. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 1673-1691 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A quasianalytic model of the dynamic hohlraum is presented. Results of the model are compared to both experiments and full numerical simulations with good agreement. The computational simplicity of the model allows one to find the behavior of the hohlraum radiation temperature as a function of the various parameters of the system and thus find optimum parameters as a function of the driving current. The model is used to investigate the benefits of ablative standoff and quasispherical Z pinches. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 407-422 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Diocotron modes are discussed for a finite length nonneutral plasma column under the assumption of bounce averaged E×B drift dynamics and small Debye length. In this regime, which is common to experiments, Debye shielding forces the mode potential to be constant along field lines within the plasma (i.e., ∂δφ/∂z=0). One can think of the plasma as a collection of magnetic-field aligned rods that undergo E×B drift across the field and adjust their length so as to maintain the condition ∂δφ/∂z=0 inside the plasma. Using the Green function (for a region bounded by a conducting cylinder) to relate the perturbed charge density and the perturbed potential, imposing the constraint ∂δφ/∂z=0, and discretizing yields a matrix eigenvalue problem. The mode eigenvector δNl,ω(rj)≡∫dz δnl,ω(rj,z) is the lth azimuthal Fourier component of the z-integrated density perturbation, and the frequency ω is the eigenvalue. The solutions include the full continuum and discrete stable and unstable diocotron modes. Finite column length introduces a new set of discrete diocotron-like modes. Also, finite column length makes possible the exponential growth of l=1 diocotron modes, long observed in experiments. The paper focuses on these two problems. To approach quantitative agreement with experiment for the l=1 instabilities, the model is extended to include the dependence of a particle's bounce averaged rotation frequency on its axial energy. For certain distributions of axial energies, this dependence can substantially affect the instability. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...