ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • American Association for the Advancement of Science (AAAS)  (1)
  • De Gruyter  (1)
  • Sage Publications  (1)
  • 2000-2004  (3)
  • 1975-1979
  • 1960-1964
  • 1870-1879
Collection
  • Articles  (3)
Years
Year
  • 1
    Publication Date: 2004-12-25
    Description: Diverse microbial communities and numerous energy-yielding activities occur in deeply buried sediments of the eastern Pacific Ocean. Distributions of metabolic activities often deviate from the standard model. Rates of activities, cell concentrations, and populations of cultured bacteria vary consistently from one subseafloor environment to another. Net rates of major activities principally rely on electron acceptors and electron donors from the photosynthetic surface world. At open-ocean sites, nitrate and oxygen are supplied to the deepest sedimentary communities through the underlying basaltic aquifer. In turn, these sedimentary communities may supply dissolved electron donors and nutrients to the underlying crustal biosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉D'Hondt, Steven -- Jorgensen, Bo Barker -- Miller, D Jay -- Batzke, Anja -- Blake, Ruth -- Cragg, Barry A -- Cypionka, Heribert -- Dickens, Gerald R -- Ferdelman, Timothy -- Hinrichs, Kai-Uwe -- Holm, Nils G -- Mitterer, Richard -- Spivack, Arthur -- Wang, Guizhi -- Bekins, Barbara -- Engelen, Bert -- Ford, Kathryn -- Gettemy, Glen -- Rutherford, Scott D -- Sass, Henrik -- Skilbeck, C Gregory -- Aiello, Ivano W -- Guerin, Gilles -- House, Christopher H -- Inagaki, Fumio -- Meister, Patrick -- Naehr, Thomas -- Niitsuma, Sachiko -- Parkes, R John -- Schippers, Axel -- Smith, David C -- Teske, Andreas -- Wiegel, Juergen -- Padilla, Christian Naranjo -- Acosta, Juana Luz Solis -- New York, N.Y. -- Science. 2004 Dec 24;306(5705):2216-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ocean Drilling Program Leg 201 Shipboard Scientific Party, NASA Astrobiology Institute, University of Rhode Island Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA. dhondt@gso.uri.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618510" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/growth & development/isolation & purification/*metabolism ; Carbon/metabolism ; Colony Count, Microbial ; *Ecosystem ; Electron Transport ; Geologic Sediments/*microbiology ; Iron/metabolism ; Manganese/metabolism ; Methane/metabolism ; Nitrates/metabolism ; Oxidants/metabolism ; Oxidation-Reduction ; Pacific Ocean ; Peru ; Photosynthesis ; Seawater/chemistry ; Sulfates/metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-03-01
    Print ISSN: 0013-9165
    Electronic ISSN: 1552-390X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Psychology
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-03-12
    Description: Summary The penetration behaviour of isocyanate-based wood resins was evaluated using x-ray microscopy. Aspen wood pieces were bonded together in a controlled manner. These were embedded in a methacrylate-based resinand thin sections were prepared, cut from the transverse face of thewoodcomposite. X-ray images of these sections were prepared at several selected x-ray energies to allow the isocyanate, cellulose, lignin and the embedding agent distributions to be mapped. The isocyanate resin was found to penetrate deeply into the wood. The resin enters large cell lumen, and wicks along the inner cell wall surfaces. The resin accesses connected cells via connecting pits, which become filled with the resin. The affinity of the isocyanate to the inner surfaces of the large cells is probably due to the hydrophobicity of these surfaces. Isocyanate resins do not penetrate into the smaller parenchyma and tracheid cells and indeed do not even wet the inner surfaces of these cells where isocyanate entry has been allowed due to damage of the cell at the macroscopic surface of the wood. If isocyanates penetrate into the wood-cell walls of the large cells, the concentration in the cell walls has been determined to be less than 2%of the bulk concentration. This lower limit is the sensitivity limit imposed by photon statistics in the data.
    Print ISSN: 0018-3830
    Electronic ISSN: 1437-434X
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...