ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-07-06
    Description: Most developing thymocytes undergo apoptosis because they cannot interact productively with molecules encoded by the major histocompatibility complex. Here, we show that mice lacking the orphan nuclear hormone receptor RORgamma lose thymic expression of the anti-apoptotic factor Bcl-xL. RORgamma thus regulates the survival of CD4+8+ thymocytes and may control the temporal window during which thymocytes can undergo positive selection. RORgamma was also required for development of lymph nodes and Peyer's patches, but not splenic follicles. In its absence, there was loss of a population of CD3-CD4+CD45+ cells that normally express RORgamma and that are likely early progenitors of lymphoid organs. Hence, RORgamma has critical functions in T cell repertoire selection and lymphoid organogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Z -- Unutmaz, D -- Zou, Y R -- Sunshine, M J -- Pierani, A -- Brenner-Morton, S -- Mebius, R E -- Littman, D R -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2369-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10875923" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; *CDC2-CDC28 Kinases ; Cell Count ; Cell Cycle ; Cell Survival ; Crosses, Genetic ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Female ; Gene Targeting ; Inhibitor of Differentiation Protein 2 ; Lymphoid Tissue/cytology/embryology/*growth & development ; Male ; Mice ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins c-bcl-2/genetics/metabolism ; Receptors, Cytoplasmic and Nuclear/genetics/*physiology ; *Receptors, Retinoic Acid ; *Receptors, Thyroid Hormone ; *Repressor Proteins ; T-Lymphocyte Subsets/*cytology ; Thymus Gland/*cytology ; *Transcription Factors ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-07-13
    Description: Intestinal intraepithelial T lymphocytes (IELs) are likely to play a key role in host mucosal immunity and, unlike other T cells, have been proposed to differentiate from local precursors rather than from thymocytes. We show here that IELs expressing the alphabeta T cell receptor are derived from precursors that express RORgammat, an orphan nuclear hormone receptor detected only in immature CD4+CD8+ thymocytes, fetal lymphoid tissue-inducer (LTi) cells, and LTi-like cells in cryptopatches within the adult intestinal lamina propria. Using cell fate mapping, we found that all intestinal alphabeta T cells are progeny of CD4+CD8+ thymocytes, indicating that the adult intestine is not a significant site for alphabeta T cell development. Our results suggest that intestinal RORgammat+ cells are local organizers of mucosal lymphoid tissue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eberl, Gerard -- Littman, Dan R -- New York, N.Y. -- Science. 2004 Jul 9;305(5681):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15247480" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/analysis ; Antigens, CD8/analysis ; Cell Lineage ; DNA-Binding Proteins/metabolism ; Hematopoietic Stem Cells/immunology/physiology ; Immunity, Mucosal ; Intestinal Mucosa/cytology/*immunology ; Lymphoid Tissue/embryology/immunology ; Mice ; Mice, Transgenic ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; Receptors, Antigen, T-Cell, alpha-beta/*analysis/genetics ; Receptors, Antigen, T-Cell, gamma-delta/analysis/genetics ; Receptors, Retinoic Acid/genetics/*metabolism ; Receptors, Thyroid Hormone/genetics/*metabolism ; T-Lymphocyte Subsets/cytology/*immunology ; T-Lymphocytes/cytology/*immunology ; Thymus Gland/cytology/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-04-24
    Description: Memory T cells are long-lived antigen-experienced T cells that are generally accepted to be direct descendants of proliferating primary effector cells. However, the factors that permit selective survival of these T cells are not well established. We show that homodimeric alpha chains of the CD8 molecule (CD8alphaalpha) are transiently induced on a selected subset of CD8alphabeta+ T cells upon antigenic stimulation. These CD8alphaalpha molecules promote the survival and differentiation of activated lymphocytes into memory CD8 T cells. Thus, memory precursors can be identified among primary effector cells and are selected for survival and differentiation by CD8alphaalpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Madakamutil, Loui T -- Christen, Urs -- Lena, Christopher J -- Wang-Zhu, Yiran -- Attinger, Antoine -- Sundarrajan, Monisha -- Ellmeier, Wilfried -- von Herrath, Matthias G -- Jensen, Peter -- Littman, Dan R -- Cheroutre, Hilde -- AI33614/AI/NIAID NIH HHS/ -- AI50263/AI/NIAID NIH HHS/ -- AI51973/AI/NIAID NIH HHS/ -- DK54451/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 23;304(5670):590-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15105501" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD8/*immunology ; Arenaviridae Infections/immunology ; CD8-Positive T-Lymphocytes/*immunology ; Cell Differentiation ; Cell Survival ; *Immunologic Memory ; Interferon-gamma/biosynthesis ; *Lymphocyte Activation ; Lymphocytic choriomeningitis virus/immunology ; Membrane Glycoproteins/immunology/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Receptors, Interleukin-7/immunology/metabolism ; T-Lymphocyte Subsets/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-09-10
    Description: Expression of either the CD4 or CD8 glycoproteins discriminates two functionally distinct lineages of T lymphocytes. A null mutation in the gene encoding CD4 impairs the development of the helper cell lineage that is normally defined by CD4 expression. Infection of CD4-null mice with Leishmania has revealed a population of functional helper T cells that develops despite the absence of CD4. These CD8- alpha beta T cell receptor+ T cells are major histocompatibility complex class II-restricted and produce interferon-gamma when challenged with parasite antigens. These results indicate that T lymphocyte lineage commitment and peripheral function need not depend on the function of CD4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Locksley, R M -- Reiner, S L -- Hatam, F -- Littman, D R -- Killeen, N -- AI30663/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1993 Sep 10;261(5127):1448-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco 94143-0654.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8367726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/genetics/*immunology ; Antigens, CD8/immunology ; Antigens, Protozoan/immunology ; B-Lymphocytes/immunology ; Base Sequence ; CD4-CD8 Ratio ; Histocompatibility Antigens Class II/immunology ; Hypersensitivity, Delayed ; Interferon-gamma/biosynthesis/immunology ; Leishmania tropica/*immunology ; Leishmaniasis, Cutaneous/*immunology ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Oligodeoxyribonucleotides ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; T-Lymphocytes/immunology ; T-Lymphocytes, Helper-Inducer/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-25
    Description: To complete their maturation, most immature thymocytes depend on the simultaneous engagement of their antigen receptor [alpha beta T cell receptor (TCR)] and their CD4 or CD8 coreceptors with major histocompatibility complex class II or I ligands, respectively. However, a normal subset of mature alpha beta TCR+ thymocytes did not follow these rules. These thymocytes expressed NK1.1 and a restricted set of alpha beta TCRs that are intrinsically class I-reactive because their positive selection was class I-dependent but CD8-independent. These cells were CD4+ and CD4-8- but never CD8+, because the presence of CD8 caused negative selection. Thus, neither CD4 nor CD8 contributes signals that direct their maturation into the CD4+ and CD4-8- lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bendelac, A -- Killeen, N -- Littman, D R -- Schwartz, R H -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1774-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7907820" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/analysis ; Antigens, CD4/analysis ; Antigens, CD8/analysis ; Antigens, Ly ; Antigens, Surface ; CD4-Positive T-Lymphocytes/cytology/*immunology ; Female ; Histocompatibility Antigens Class I/*physiology ; Lectins, C-Type ; Ligands ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; NK Cell Lectin-Like Receptor Subfamily B ; Phenotype ; Proteins/analysis ; Receptors, Antigen, T-Cell, alpha-beta/analysis/*physiology ; T-Lymphocyte Subsets/cytology/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...