ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A procedure was developed for the biosynthetic preparation of 15N-labelled guanosine and inosine through the action of a mutant Bacillus subtilis strain. Crude [N2,1,3,7,9-15N]guanosine and [1,3,7,9-15N]inosine were isolated from the culture filtrate by precipitation and anion-exchange chromatography (Scheme 1). No cell lysis and no enzymatic degradation was necessary. The per-isobutyrylated derivatives 1 and 2 were isolated from a complex mixture, purified by virtue of their different lipophilicity, and separated in three steps involving normal-and reversed-phase silica-gel chromatography. One litre of complex nutrient medium yielded 8.44 mmol of guanosine derivative and 2.84 mmol of inosine derivative with high average 15N enrichment (83.5 and 91.9 atom-%, resp.). [N6,1,3,7,9-15N]Adenosine (4) was obtained from 2′,3′,5′-tri-O-isobutyryl[1,3,7,9-15N]inosine (1) through the ammonolysis of its 1,2,4-triazolyl derivative with aqueous 15NH3 (Scheme 2).
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 7 (1995), S. 567-571 
    ISSN: 0899-0042
    Keywords: enantiomer separation ; chromatographic resolution ; peak integration ; peak size ratio ; calibration curve ; determination of optical purity ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The chromatographic quantitation of very low amounts of an enantiomer in the presence of its antipode can be an extraordinary challenge. If resolution of the peaks is not complete even at extreme mass ratios an integrator will yield inaccurate results due to geometric effects. A given resolution can be adequate for peaks of similar size but result in severe overlap if one of the signals is markedly smaller. If tailing occurs, which is more the rule than the exception, the problem is especially severe for last eluted small peaks. Additional obstacles are detector nonlinearity and other sources of unsatisfactory calibration curves, overloading phenomena, and the possible lack of standards of highest optical purity. These problems have been studied by computer simulations and the liquid chromatographic separation of (R,S)-phenylethyl naphthoic acid amide on a chiral stationary phase. © 1995 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0947-3440
    Keywords: Antibiotics ; Sorangium cellulosum ; Macrolides ; Mass spectrometry ; X-ray structure analysis ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Two novel metabolites, sorangiolide A (1) and B (2), were isolated from the mother liquors and side fractions of the sorangicin A pilot-scale production. Their structures were elucidated by 2D-NMR spectroscopy and mass spectrometry as 18-membered macrolactones with a C11-carboxylic acid side chain. Sorangiolide B (2) differs from A (1) by an additional hydroxyl group at C-6 in the side chain. The absolute configuration of sorangiolide A (1) was established by X-ray structure analysis. The sorangiolides show a weak antibiotic activity against Gram-positive bacteria.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0947-3440
    Keywords: 4H-Pyrazole synthesis ; Dimethoxycarbene ; Diels-Alder reactions, „inverse“ ; Isopyrazolium ketal cations ; Phthalazinecarboxylates ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: 3,6-Diphenyl-1,2,4,5-tetrazine (6) reacts with dimethoxycarbene (7), generated from the 1,3,4-oxadiazoline 8, to yield the 4H-pyrazole 10. This is alkylated to the N-methyl-4H-pyrazolium tetrafluoroborate 12 in high yield. The alkylated, cationic azine system of 12 serves as electron-deficient diene in a [4+ + 2] cycloaddition with inverse electron demand and reacts diastereoselectively with several cyclic olefins as electron-rich dienophiles. The initially formed cationic [4+ + 2] adduct, e.g. 15, is unstable and rearranges probably via 16 to a racemic phthalazinecarboxylic ester of type 17. The crystal structures of the epoxyphthalazinecarboxylic ester 25 and of the trans-annulated cycloocta[d]pyridazine 27 were determined by X-ray diffraction. In contrast to the cyclic olefins, cyclooctyne (28) reacts with the pyrazolium cation 12 to yield the cyclooctapyridiazinium tetrafluoroborate 30 via the cycloadduct 29.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0947-3440
    Keywords: Cinnamic acids ; Cyclophanes ; Topochemistry ; Cycloadditions ; Photochemistry ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The pseudo-gem cinnamophane dicarboxylic acid 1 was shown to undergo a stereospecific [2 + 2] photocycloaddition in the solid state, generating the truxinic acid derivative 2 in 100% chemical yield; the reaction can proceed to completion because it is not an “independent site” solid state reaction. The X-ray structure of 1 reveals that its molecules are associated in dimers formed from four almost linear hydrogen bonds. A salient feature is the intramolecular centre-to-centre distance between the reacting double bonds of ≈3.37 Å, the smallest known to date. In contrast to trans-cinnamic acid, the topochemical [2 + 2] photocycloaddition occurs also in solution, with a quantitative chemical yield and a quantum yield of ≈0.55 (in methanol).
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-06-12
    Description: In many organisms, master control genes coordinately regulate sex-specific aspects of development. SDC-2 was shown to induce hermaphrodite sexual differentiation and activate X chromosome dosage compensation in Caenorhabditis elegans. To control these distinct processes, SDC-2 acts as a strong gene-specific repressor and a weaker chromosome-wide repressor. To initiate hermaphrodite development, SDC-2 associates with the promoter of the male sex-determining gene her-1 to repress its transcription. To activate dosage compensation, SDC-2 triggers assembly of a specialized protein complex exclusively on hermaphrodite X chromosomes to reduce gene expression by half. SDC-2 can localize to X chromosomes without other components of the dosage compensation complex, suggesting that SDC-2 targets dosage compensation machinery to X chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawes, H E -- Berlin, D S -- Lapidus, D M -- Nusbaum, C -- Davis, T L -- Meyer, B J -- GM30702/GM/NIGMS NIH HHS/ -- T32 GM07127/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1800-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/embryology/*genetics/physiology ; *Caenorhabditis elegans Proteins ; *DNA-Binding Proteins ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Female ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Helminth Proteins/genetics/*physiology ; Male ; Molecular Sequence Data ; Mutation ; Promoter Regions, Genetic ; Repressor Proteins/genetics/*physiology ; *Sex Determination Processes ; Transgenes ; X Chromosome/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-07-14
    Description: The endogenous opioid system is involved in stress responses, in the regulation of the experience of pain, and in the action of analgesic opiate drugs. We examined the function of the opioid system and mu-opioid receptors in the brains of healthy human subjects undergoing sustained pain. Sustained pain induced the regional release of endogenous opioids interacting with mu-opioid receptors in a number of cortical and subcortical brain regions. The activation of the mu-opioid receptor system was associated with reductions in the sensory and affective ratings of the pain experience, with distinct neuroanatomical involvements. These data demonstrate the central role of the mu-opioid receptors and their endogenous ligands in the regulation of sensory and affective components of the pain experience.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zubieta, J K -- Smith, Y R -- Bueller, J A -- Xu, Y -- Kilbourn, M R -- Jewett, D M -- Meyer, C R -- Koeppe, R A -- Stohler, C S -- R01 DE 12059/DE/NIDCR NIH HHS/ -- R01 DE 12743/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2001 Jul 13;293(5528):311-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Mental Health Research Institute, Medical School, The University of Michigan, Ann Arbor, MI 48104-1687, USA. zubieta@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11452128" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amygdala/physiology ; Analgesics, Opioid/administration & dosage ; Brain/*physiology ; Brain Mapping ; Female ; Fentanyl/administration & dosage/*analogs & derivatives ; Humans ; Magnetic Resonance Imaging ; Male ; Masseter Muscle ; Opioid Peptides/physiology ; *Pain ; Pain Measurement ; Receptors, Opioid, mu/*physiology ; Thalamus/physiology ; Tomography, Emission-Computed
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2000-10-29
    Description: An unusual property of the circadian timekeeping systems of animals is rhythm "splitting," in which a single daily period of physical activity (usually measured as wheel running) dissociates into two stably coupled components about 12 hours apart; this behavior has been ascribed to a clock composed of two circadian oscillators cycling in antiphase. We analyzed gene expression in the hypothalamic circadian clock, the suprachiasmatic nucleus (SCN), of behaviorally "split" hamsters housed in constant light. The results show that the two oscillators underlying the split condition correspond to the left and right sides of the bilaterally paired SCN.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de la Iglesia, H O -- Meyer, J -- Carpino, A Jr -- Schwartz, W J -- R01 NS24542/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):799-801.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA. hacho@bio.umass.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11052942" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Arginine Vasopressin/genetics/metabolism ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks/*physiology ; Cell Cycle Proteins ; Circadian Rhythm/*physiology ; Cricetinae ; *Gene Expression ; Helix-Loop-Helix Motifs ; In Situ Hybridization ; Light ; Male ; Mesocricetus ; Motor Activity ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Suprachiasmatic Nucleus/metabolism/*physiology ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-02-21
    Description: To achieve X-chromosome dosage compensation, organisms must distinguish X chromosomes from autosomes. We identified multiple, cis-acting regions that recruit the Caenorhabditis elegans dosage compensation complex (DCC) through a search for regions of X that bind the complex when detached from X. The DCC normally assembles along the entire X chromosome, but not all detached regions recruit the complex, despite having genes known to be dosage compensated on the native X. Thus, the DCC binds first to recruitment sites, then spreads to neighboring X regions to accomplish chromosome-wide gene repression. From a large chromosomal domain, we defined a 793-base pair fragment that functions in vivo as an X-recognition element to recruit the DCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Csankovszki, Gyorgyi -- McDonel, Patrick -- Meyer, Barbara J -- F32-GM065007/GM/NIGMS NIH HHS/ -- R37-GM30702/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1182-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Base Sequence ; Binding Sites ; Caenorhabditis elegans/*genetics/metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Carrier Proteins/metabolism ; Chromosomes/metabolism ; Cosmids ; DNA-Binding Proteins/metabolism ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Female ; In Situ Hybridization, Fluorescence ; Male ; Models, Genetic ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Repetitive Sequences, Nucleic Acid ; X Chromosome/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-12-06
    Description: In nematodes, flies, and mammals, dosage compensation equalizes X-chromosome gene expression between the sexes through chromosome-wide regulatory mechanisms that function in one sex to adjust the levels of X-linked transcripts. Here, a dosage compensation complex was identified in the nematode Caenorhabditis elegans that reduces transcript levels from the two X chromosomes in hermaphrodites. This complex contains at least four proteins, including products of the dosage compensation genes dpy-26 and dpy-27. Specific localization of the complex to the hermaphrodite X chromosomes is conferred by XX-specific regulatory genes that coordinately control both sex determination and dosage compensation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chuang, P T -- Lieb, J D -- Meyer, B J -- GM30702/GM/NIGMS NIH HHS/ -- T32 GM07127/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 6;274(5293):1736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8939870" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/metabolism ; *Caenorhabditis elegans Proteins ; Carrier Proteins/analysis/chemistry/*metabolism ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Electrophoresis, Polyacrylamide Gel ; Female ; Genes, Helminth ; Genes, Regulator ; Helminth Proteins/analysis/chemistry/*metabolism ; Male ; Nuclear Proteins/analysis/chemistry/*metabolism ; Precipitin Tests ; RNA, Helminth/metabolism ; RNA, Messenger/metabolism ; Sex Determination Analysis ; X Chromosome/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...