ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (64)
  • 1995-1999  (76)
  • 1985-1989  (64)
  • 1930-1934  (5)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 89 (1985), S. 211-213 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 5076-5085 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The ionization potential of small metal and dielectric spheres is considered in different frameworks: classical, semiclassical, and quantum mechanical density functional approach. Classical calculations give conflicting results, and the generally accepted result for the ionization potential of a metal sphere of radius R: WI(R)=bulk work function+(3/8)q2/R is shown to be wrong, resulting from the classical image potential too close to the metal surface. Using appropriate cutoff to the image potential, the result WI(R)=bulk work function+(1/2)q2/R (previously obtained from solvation energy considerations) is recovered. Experimental results on relatively large particles are in agreement with the latter result. For very small clusters, deviations of experimental results from this classical behavior are shown by a density functional calculation to arise from quantum mechanical effects. These are first the spilloff of the electronic wave functions beyond the cluster edge and secondly from exchange and correlation contributions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 8127-8140 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Three-dimensional arrays of organically passivated CdSe nanocrystals were investigated under hydrostatic pressure using photoluminescence (PL) and absorption spectroscopies. Interdot separations were varied coarsely by varying the organic ligand on the nanocrystal and finely by applying hydrostatic pressure. The PL and absorption spectra of solutions and arrays of CdSe nanocrystals capped by either tri-n-octylphosphine oxide or tri-n-butylphosphine oxide are the same up to 60 kbar, which suggests that they exhibit no interdot coupling since the interdot separations in the solutions (∼50 nm) are much greater than those in the arrays ((approximately-less-than)1 nm). While the variation with pressure is roughly that expected from the increase in band gap energy of bulk CdSe with pressure and the increase in confinement energies of electrons and holes with increased pressure, there is still a significant difference in the energy of the PL peak and the first exciton in absorption (the Stokes shift) for both these solutions and arrays that increases with pressure. This is attributed mostly to increased vibrational relaxation due to the movement of nuclei in the excited state. In contrast, there is a distinct difference between the pressure dependence of CdSe/pyridine dots in solution and arrays; the increase of the energy of the first exciton peak in absorption with pressure becomes markedly slower above about 30 kbar in CdSe/pyridine arrays, and is lower than that in the corresponding solution by ∼50 meV at 50 kbar and ∼70 meV at 60 kbar. Experiments with CdSe/shell/pyridine dots, with large electron and hole barriers, cast doubt on the mechanism of interdot electron and/or hole tunneling leading to a decrease in electron and/or hole confinement energy. Also, interdot tunneling of single carriers may be inhibited by the charge separation energy. The differences in the dielectric medium surrounding each dot in the solution and array explain their different absorption exciton energies at ambient pressure, but not the changes at elevated pressure. The observed loss of much of the pyridine ligands during array drying could be very significant, and contact between pyridine-capped dots at elevated pressure may be important. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 1876-1881 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The process of ion bombardment is investigated for the fabrication of Mo/Si multilayer x-ray mirrors using e-beam evaporation. The ion treatment is applied immediately after deposition of each of the Si layers to smoothen the layers by removing an additional thickness of the Si layer. In this study the parameters of Kr+ ion bombardment have been optimized within the energy range 300 eV–2 keV and an angular range between 20° and 50°. The optical performance of the Mo/Si multilayers is determined by absolute measurements of the near-normal-incidence reflectivity at 14.4 nm wavelength. The multilayer structures are analyzed further with small-angle reflectivity measurements using both specular reflectivity and diffuse x-ray scattering. The optimal smoothening parameters are obtained by determining the effect of ion bombardment on the interface roughness of the Si layer. The optimal conditions are found to be 2 keV at 50° angle of incidence with respect to the surface. These settings result in 47% reflectivity at 85° (λ=14.4 nm) for a 16-period Mo/Si multilayer mirror, corresponding to an interface roughness of 0.21 nm rms. Analysis shows that the interface roughness is determined by ion induced viscous flow, an effect which increases with ion energy as well as angle of incidence. In order to determine the effect of intermixing of the Si and Mo atoms, the penetration depth of the Kr+ ions is calculated as a function of ion energy and angle of incidence. Furthermore, the angular dependence of the etch yield, obtained from the in situ reflectivity measurements, is investigated in order o determine the optimal ion beam parameters for the production of multilayer mirrors on curved substrates. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 4700-4708 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: To optimize the growth process of Mo/Si multilayers, the effect of an elevated substrate temperature during deposition has been studied in the temperature range between 300 K and 550 K. Multilayer properties, such as interface roughness, d-spacing, and structure of the layers, have been investigated during deposition and cool-down, after cool-down, and during heating. A number of techniques have been used: small-angle, near-normal incidence, and in situ reflectivity measurements. It is found that the increased substrate temperature changes the interface roughness to a minimum value for samples produced at 488 K. Also, a change of the d-spacing as a function of time and temperature is observed and is explained by annihilation of free volume of the Si layer. The atomic structures of the layers deposited at different temperatures have been analyzed with high resolution electron microscopy (TEM), which shows that both materials are amorphous for the entire temperature range investigated. At the extremes of the temperature range investigated irregular layer structures, such as ripples and V-shaped structures, have been observed by TEM. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 61 (1987), S. 5084-5088 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have developed a technique for the fabrication of shallow, silicided n+−p and p+−n junctions with good electrical characteristics. The technique utilizes the ion implantation of dopants into silicide layers previously formed by ion-beam mixing with Si ions and low-temperature annealing, and the subsequent drive-in of implanted dopants into the Si substrate to form shallow junctions. This technique can be applied to the fabrication of metal-oxide-semiconductor field-effect transistor in a self-aligned fashion and can have a significant impact on complementary metal-oxide-semiconductor devices.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 3 (1931), S. 253-254 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 3 (1931), S. 254-255 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 25 (1933), S. 184-187 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...