ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (20)
Collection
Years
Year
  • 1
    Publication Date: 2017-10-02
    Description: The Panoramic Cameras (Pancam) on the Spirit and Opportunity Mars Exploration Rovers have acquired multispectral reflectance observations of rocks and soils at different incidence, emission, and phase angles that will be used for photometric modeling of surface materials. Phase angle coverage at both sites extends from approx. 0 deg. to approx. 155 deg.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 10; LPI-Contrib-1234-Pt-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: Introduction. The panoramic camera (Pancam) multispectral, stereoscopic imaging systems on the Mars Exploration Rovers Spirit and Opportunity [1] have acquired and downlinked more than 45,000 images (~35 Gbits of data) over more than 700 combined sols of operation on Mars as of early January 2005. A large subset of these images were acquired as part of 26 large multispectral and/or broadband "albedo" panoramas (15 on Spirit, 11 on Opportunity) covering large ranges of azimuth (12 spanning 360 ) and designed to characterize major regional color and albedo characteristics of the landing sites and various points along both rover traverses.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-IR wavelengths provide limited compositional and mineralogic constraints on the presence abundance, and physical properties of ferric- and ferrous-iron bearing minerals in rocks, soils, and dust at both sites. High resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally- and mineralogically-relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish salty soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of martian surface materials.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: The cratered plains of Gusev traversed by Spirit are generally low-relief rocky plains dominated by impact and eolian processes. Ubiquitous shallow, soil-filled, circular depressions, called hollows, are modified impact craters. Rocks are dark, fine-grained basalts, and the upper 10 m of the cratered plains appears to be an impact-generated regolith developed over intact basalt flows. Systematic field observations across the cratered plains identified vesicular clasts and rare scoria similar to original lava flow tops, consistent with an upper inflated surface of lava flows with adjacent collapse depressions. Crater and hollow morphometry are consistent with most being secondaries. The size frequency distribution of rocks 〉0.1 m diameter generally follows exponential functions similar to other landing sites for total rock abundances of 5-35%. Systematic clast counts show that areas with higher rock abundance and more large rocks have higher thermal inertia. Plains with lower thermal inertia have fewer rocks and substantially more pebbles that are well sorted and evenly spaced, similar to a desert pavement or lag. Eolian bed forms (ripples and wind tails) have coarse surface lags, and many are dust covered and thus likely inactive. Deflation of the surface _5-25 cm likely exposed two-toned rocks and elevated ventifacts and transported fines into craters creating the hollows. This observed redistribution yields extremely slow average erosion rates of _0.03 nm/yr and argues for very little long-term net change of the surface and a dry and desiccating environment similar to today's since the Hesperian (or _3 Ga).
    Keywords: Geophysics
    Type: Journal of Geophysical Research; Volume 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: The MArs Hand Lens Imager (MAHLI) is a small, RGB-color camera designed to examine geologic material at 12.5-75 microns/pixel resolution at the Mars Science Laboratory (MSL) landing site. MAHLI is a PI-led investigation competitively selected by NASA in December 2004 as part of the science payload for the MSL rover launching in 2009. The instrument is being fabricated by, and will be operated by, Malin Space Science Systems of San Diego, California.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 5; LPI-Contrib-1234-Pt-5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-02
    Description: We are using data from the Pancam and Microscopic Imager (MI) on the Opportunity rover to characterize the soil grains at Meridiani Planum. We have traced individual grains in all MI images of the soils using the software application ImageJ distributed by NIH, and subsequently derived size and shape properties about the grains. The resolution of the MI is 31 microns per pixel [1] so we limit our measurements to those grains larger than about 0.3 mm in size. In cases where the grain is partially or substantially buried by other grains or finer soil particles, we do not make a measurement. False-color composites from Pancam images that cover the same location imaged by MI are made from the Left 2,5,6 (753, 535, 482 nm) filters or Right 2,7,1 (753, 1009, 430 nm) filters [2] in the Red, Green, and Blue channels, respectively. These color images are then merged with the MI images to illustrate color properties of particular grains. Pancam spectra are also extracted from grains when there is sufficient spatial coverage. in diameter. Figure 2 illustrates the dominance of these small grains at this particular location, which happens to be on the southern wall of Eagle crater. The Pancam color merge with this MI image suggests that the small spherules are more consistent with the basalt grains than the blueberries (spherulitic concretions derived from outcrop rocks [7]). The resolution of Pancam images of this location is on the order of 0.5 mm so the grains are only barely resolved. A Mossbauer measurement taken on an adjacent soil (Sol 53 Vanilla) that is composed solely of these smaller spherules (Fig 1) is consistent with a basaltic composition for the grains. Their concentration at this particular location in a brighter, elongate patch along the southeastern wall compared to elsewhere inside Eagle crater suggests wind activity favored their transport and subsequent deposition here. Their spherical shape is also possibly the result of wind action rounding them during transport, though water action cannot be ruled out.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXVI, Part 21; LPI-Contrib-1234-Pt-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-02
    Description: We present a comprehensive visible/near-infrared two-layer radiative transfer modeling study using laboratory spectra of variable dust thicknesses deposited on substrates with known photometric parameters. The masking effects of Martian airfall dust deposition on rocks, soils, and lander/rover components provides the incentive to improve two-layer models [1-3]. It is believed that the model presented will facilitate understanding of the spectral and compositional properties of both the dust layer and substrate material, and allow for better compensation for dust deposition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 18; LPI-Contrib-1234-Pt-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-02
    Description: The traverse of the Mars Exploration Rover Opportunity across its Meridiani Planum landing site has shown that wind has affected regolith by creating drifts, dunes, and ubiquitous ripples, by sorting grains during aeolian transport, by forming bright wind streaks downwind from craters seen from orbit, and by eroding rock with abrading, wind-blown material. Pre-landing orbiter observations showed bright and dark streaks tapering away from craters on the Meridiani plains. Further analysis of orbiter images shows that major dust storms can cause bright streak orientations in the area to alternate between NW and SE, implying bright wind streak materials encountered by Opportunity are transient, potentially mobilized deposits. Opportunity performed the first in situ investigation of a martian wind streak, focusing on a bright patch of material just outside the rim of Eagle crater. Data from Pancam, the Miniature Thermal Emission Spectrometer (Mini-TES), the Alpha-Particle X-Ray Spectrometer (APXS), and the Mossbauer spectrometer either are consistent with or permit an air fall dust interpretation. We conclude that air fall dust, deposited in the partial wind shadow of Eagle crater, is responsible for the bright streak seen from orbit, consistent with models involving patchy, discontinuous deposits of air fall dust distributed behind obstacles during periods of atmospheric thermal stability during major dust storms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 18; LPI-Contrib-1234-Pt-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-02
    Description: The Magnetic Properties Experiments were designed to investigate the properties of the airborne dust in the Martian atmosphere. A preferred interpretation of previous experiments (Viking and Pathfinder) was that the airborne dust is primarily composed by composite silicate particles containing as a minor constituent the mineral maghemite (gamma-Fe2O3). In this abstract we show how the magnetic properties experiments on Spirit and Opportunity provide information on the distribution of magnetic mineral(s) in the dust on Mars, with emphasis on results from Opportunity.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 13; LPI-Contrib-1234-Pt-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...