ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Nature, San Francisco, Schweizerbart'sche Verlagsbuchhandlung, vol. 437, no. 7060, pp. 871-874, pp. B10404, (ISSN 0016-8548, ISBN 3-510-50045-8)
    Publication Date: 2005
    Keywords: Stress ; Coulomb ; Seismicity ; trigger ; Dynamic ; Landers ; Earthquake ; Hector ; Mine ; Denali ; Non-linear effects ; fault ; gouge ; Laboratory measurements ; granular ; media ; Physical properties of rocks
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Nature, Regensburg, Inst. Electrical & Electronics Engineers, vol. 435, no. 7040, pp. 328-331, pp. TC5001, (ISBN: 0534351875, 2nd edition)
    Publication Date: 2005
    Keywords: Seismicity ; Statistical investigations ; time-dependent ; Earthquake hazard ; map ; FROTH
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  Chichester, 2nd ed., xvii + 517 pp., Wiley, vol. 5, no. 22, pp. 662-664, (ISBN 0-470-87000-1 (HB), ISBN 0-470-87001-X (PB))
    Publication Date: 2005
    Keywords: GIS ; Textbook of informatics ; Textbook of geography ; geography ; management ; policy
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: Vertical and latitudinal changes in the stratospheric ozone in the post-chlorofluorocarbon (CFC) era are investigated using simulations of the recent past and the 21st century with a coupled chemistry-climate model. Model results reveal that, in the 2060s when the stratospheric halogen loading is projected to return to its 1980 values, the extratropical column ozone is significantly higher than that in 1975-1984, but the tropical column ozone does not recover to 1980 values. Upper and lower stratospheric ozone changes in the post- CFC era have very different patterns. Above 15 hPa ozone increases almost latitudinally uniformly by 6 Dobson Unit (DU), whereas below 15 hPa ozone decreases in the tropics by 8 DU and increases in the extratropics by up to 16 DU. The upper stratospheric ozone increase is a photochemical response to greenhouse gas induced strong cooling, and the lower stratospheric ozone changes are consistent with enhanced mean advective transport due to a stronger Brewer-Dobson circulation. The model results suggest that the strengthening of the Brewer-Dobson circulation plays a crucial role in ozone recovery and ozone distributions in the post-CFC era.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the sci entific connection between ozone losses and CFCs and other ozone depl eting substances (ODSs) has been firmly established with laboratory m easurements, atmospheric observations, and modeling research. This science research led to the implementation of international agreements t hat largely stopped the production of ODSs. In this study we use a fu lly-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an ann ual rate of 3%. In this "world avoided" simulation 1.7 % of the globa lly-average column ozone is destroyed by 2020, and 67% is destroyed b y 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observ ed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower strat osphere remain constant until about 2053 and then collapse to near ze ro by 2058 as a result of heterogeneous chemical processes (as curren tly observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increa ses, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: On 26 January 2006, the High Resolution Dynamic Limb Sounder (HIRDLS) observed low mixing ratios of ozone and nitric acid in an approximately 2 km vertical layer near 100 hPa extending from the subtropics to 55 degrees N over North America. The subsequent evolution of the layer is simulated with the Global Modeling Initiative (GMI) model and substantiated with HIRDLS observations. Air with low mixing ratios of ozone is transported poleward to 80 degrees N. Although there is evidence of mixing with extratropical air and diabatic descent, much of the tropical intrusion returns to the subtropics. This study demonstrates that HIRDLS and the GMI model are capable of resolving thin intrusion events. The observations combined with simulation are a first step towards development of a quantitative understanding of the lower stratospheric ozone budget.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: The twelve weather and climate models participating in the Global Land-Atmosphere Coupling Experiment (GLACE) show both a wide variation in the strength of land-atmosphere coupling and some intriguing commonalities. In this paper, we address the causes of variations in coupling strength - both the geographic variations within a given model and the model-to-model differences. The ability of soil moisture to affect precipitation is examined in two stages, namely, the ability of the soil moisture to affect evaporation, and the ability of evaporation to affect precipitation. Most of the differences between the models and within a given model are found to be associated with the first stage - an evaporation rate that varies strongly and consistently with soil moisture tends to lead to a higher coupling strength. The first stage differences reflect identifiable differences in model parameterization and model climate. Intermodel differences in the evaporation-precipitation connection, however, also play a key role.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-02
    Description: Titanium aluminides are attractive alternatives to superalloys in moderate temperature applications (600 to 850 C) by virtue of their high strength-to-density ratio (high specific strength). These alloys are also more ductile than competing intermetallic systems. However, most Ti-based alloys tend to degrade through interstitial embrittlement and rapid oxidation during exposure to elevated temperatures. Therefore, their environmental behavior must be thoroughly investigated before they can be developed further. The goals of titanium aluminide environmental studies at the NASA Lewis Research Center are twofold: characterize the degradation mechanisms for advanced structural alloys and determine what means are available to minimize degradation. The studies to date have covered the alpha 2 (Ti3Al), orthorhombic (Ti2AlNb), and gamma (TiAl) classes of alloys.
    Keywords: Metals and Metallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-05
    Description: The Parametric Inlet is an innovative concept for the inlet of a gas-turbine propulsion system for supersonic aircraft. The concept approaches the performance of past inlet concepts, but with less mechanical complexity, lower weight, and greater aerodynamic stability and safety. Potential applications include supersonic cruise aircraft and missiles. The Parametric Inlet uses tailored surfaces to turn the incoming supersonic flow inward toward an axis of symmetry. The terminal shock spans the opening of the subsonic diffuser leading to the engine. The external cowl area is smaller, which reduces cowl drag. The use of only external supersonic compression avoids inlet unstart--an unsafe shock instability present in previous inlet designs that use internal supersonic compression. This eliminates the need for complex mechanical systems to control unstart, which reduces weight. The conceptual design was conceived by TechLand Research, Inc. (North Olmsted, OH), which received funding through NASA s Small-Business Innovation Research program. The Boeing Company (Seattle, WA) also participated in the conceptual design. The NASA Glenn Research Center became involved starting with the preliminary design of a model for testing in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10 10 SWT). The inlet was sized for a speed of Mach 2.35 while matching requirements of an existing cold pipe used in previous inlet tests. The parametric aspects of the model included interchangeable components for different cowl lip, throat slot, and sidewall leading-edge shapes and different vortex generator configurations. Glenn researchers used computational fluid dynamics (CFD) tools for three-dimensional, turbulent flow analysis to further refine the aerodynamic design.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...