ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (5)
  • 2005-2009  (5)
Collection
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: We quantified eight parent volatiles (H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4) in the Jupiter-family comet Tempel 1 using high-dispersion infrared spectroscopy in the wavelength range 2.8 to 5.0 micrometers. The abundance ratio for ethane was significantly higher after impact, whereas those for methanol and hydrogen cyanide were unchanged. The abundance ratios in the ejecta are similar to those for most Oort cloud comets, but methanol and acetylene are lower in Tempel 1 by a factor of about 2. These results suggest that the volatile ices in Tempel 1 and in most Oort cloud comets originated in a common region of the protoplanetary disk.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 310; 5746; 270-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology Science Conference 2008; Apr 14, 2008 - Apr 17, 2008; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: This report describes the facility and experimental methods at the Goddard Space Flight Center Optics Branch for the measurement of the surface figure of cryogenically-cooled spherical mirrors using standard phase-shifting interferometry, with a standard uncertainty below 2nm rms. Two developmental silicon carbide mirrors were tested: both were spheres with radius of curvature of 600 mm, and clear apertures of 150 mm. The mirrors were cooled within a cryostat, and the surface figure error measured through a fused-silica window. The GSFC team developed methods to measure the in-situ SFE at 20 K with a combined standard uncertainty below 2 nm rms and the change in SFE with temperature (the cryochange) with a combined standard uncertainty of 0.25 -- 0.75 nm rms. This paper will present the measurement facility, methods, and uncertainty analysis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AS04-AS08-65 , SPIE Paper-5904-29 , SPIE Symposium on Optics and Photonics; Jul 31, 2004 - Aug 04, 2004; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The CheMin minerological instrument on Mars Science Laboratory (MSL'09) [1] will return quantitive Xray diffraction data (XRD) and quantative X-ray fluorescence data (XRF;14〈Z〈92) from scooped soil samples and drilled rock powders collected from the Mars surface. Samples of 45-65 mm 3 from material sieved to less than 150 micrometers will be delivered through a funnel to one of 27 reusable sample cells (five additional cells on the sample wheel contain diffraction of fluorescence standards). Sample cells are 8-mm diamater discs with 7-micrometer thick Mylar or Kapton windows spaced 170 micrometers apart. Within this volume, the sample is shaken by piezoelectric vibration at sonic frequencies, causing the powder to flow past a narrow, collimated -ray beam in random orientation can be obtained even from minnerals exhibiting strong preferred orientation such as phylosilicates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN-184 , Workshop on Martian Phyllosilicates: Recorders of Aqueous Processes; Oct 21, 2008 - Oct 23, 2008; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This work seeks to use the chemical, isotopic, and mineralogical characteristics of secondary carbonate minerals produced during brief aqueous events to identify the conditions of the aqueous environment in which they formed. Liquid water near the surface of Mars is subject to either rapid freezing and/or evaporation. These processes are also active on Earth, and produce secondary minerals that have complex chemical, mineralogical, and isotopic textures and compositions that can include covariant relationships between Delta C-13 (sub VPDB) and delta O-18 (sub VSMOW). The extremely well studied four billion year old carbonates preserved in martian meteorite ALH 84001 also show covariant delta C-13 and delta O-18 compositions, but these variations are manifested on a micro-scale in a single thin section while the variation observed so far in terrestrial carbonates is seen between different hand samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-17934 , 40th Lunar and Planetary Science Conference; Mar 23, 2009 - Mar 27, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...