ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-11
    Description: The objective of this study is to compare cognitive function tests, Automated Neurological Assessment Metrics (ANAM) based Readiness Evaluation System (ARES(Registered TradeMark)) on a Palm Pilot and Windows based Spaceflight Cognitive Assessment Tool (WinSCAT(Registered TradeMark)) on a personal computer (PC) to assess performance effects of promethazine (PMZ) after administration to human subjects. In a randomized placebo-controlled cross-over design, subjects received 12.5, 25, and 50 mg intramuscular (IM) PMZ or a placebo and completed 14 sessions with WinSCAT(Registered TradeMark) (v. 1.26) and ARES(Registered TradeMark) (v. 1.27) consecutively for 72 h post dose. Maximum plasma concentrations (4.25, 6.25 and 13.33 ng/ml) were linear with dose and were achieved by 0.75, 8, and 24 h after dosing for the three doses, respectively. No significant differences in cognitive function after PMZ dosing were detected using WinSCAT(Registered TradeMark), however, tests from ARES(Registered TradeMark) demonstrated concentration dependent decrements in reaction time associated with PMZ dose.
    Keywords: Life Sciences (General)
    Type: Journal of Gravitational Physiology, Volume 12, Number 1; P45-P46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.
    Keywords: Life Sciences (General)
    Type: Optics express [electronic resource]; Volume 13; 10; 3690-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving 〉2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further investigate the sensitivity differences for low and low high doses, we performed chronic low dose-rate irradiation, and have begun studies with ATM and Nibrin inhibitors and siRNA knockout of these proteins. Results support the conclusion that for the endpoint of simple chromosomal aberrations (translocation or dicentrics), the increased radiation sensitivity of AT cells found at high doses (〉1 Gy) does not carry over to low doses or doserates, while NBS cells show increased sensitivity for both high and low dose exposures.
    Keywords: Life Sciences (General)
    Type: JSC-18081 , Radiation Research Society 55th Annual Meeting; Oct 04, 2009 - Oct 07, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The space environment consists of a varying field of radiation particles including high energy ions, with a spacecrafts shielding material providing the only major protection to astronauts from harmful exposure. Unlike lowLET gamma or Xrays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak and the correlating spatial dose distribution identified as the Bragg curve. The Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent of the energy and the type of the primary particle, and may vary for different biological endpoints. Here we describe a unique irradiation geometry and experimental system to measure the biological response across the Bragg curve in one consistent biological sample. Polyethylene shielding was used to achieve a Bragg curve distribution with the beam geometry parallel to a monolayer of fibroblast cells. We present data that highlights the differential formation of DNA double strand breaks (DSBs) and chromosomal deletions across the Bragg curve in human fibroblasts irradiated with 600 MeV/nucleon iron ion beams. Qualitative analyses of gammaH2AX fluorescence, a known marker of DSBs, indicated potentially increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak in agreement with one-dimensional transport approximations. A biological response curve generated for micronuclei induction across the Bragg curve for 600 MeV/n Fe ions did not reveal an increase in the yield of micronuclei at the Bragg peak location. Assessment of such biological parameters employing the described in vitro experimental system may provide improved platforms to measure a number of biological consequences of shielding materials across the Bragg curve for high charge and energy (HZE) ions.
    Keywords: Life Sciences (General)
    Type: NASA Space Radiation Investigator''s Workshop; May 15, 2005 - May 18, 2005; Long Island, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-11
    Description: An evolutionary algorithm applies evolution-based principles to problem solving. To solve a problem, the user defines the space of potential solutions, the representation space. Sample solutions are encoded in a chromosome-like structure. The algorithm maintains a population of such samples, which undergo simulated evolution by means of mutation, crossover, and survival of the fittest principles. Genetic Programming (GP) uses tree-like chromosomes, providing very rich representation suitable for many problems of interest. GP has been successfully applied to a number of practical problems such as learning Boolean functions and designing hardware circuits. To apply GP to a problem, the user needs to define the actual representation space, by defining the atomic functions and terminals labeling the actual trees. The sufficiency principle requires that the label set be sufficient to build the desired solution trees. The closure principle allows the labels to mix in any arity-consistent manner. To satisfy both principles, the user is often forced to provide a large label set, with ad hoc interpretations or penalties to deal with undesired local contexts. This unfortunately enlarges the actual representation space, and thus usually slows down the search. In the past few years, three different methodologies have been proposed to allow the user to alleviate the closure principle by providing means to define, and to process, constraints on mixing the labels in the trees. Last summer we proposed a new methodology to further alleviate the problem by discovering local heuristics for building quality solution trees. A pilot system was implemented last summer and tested throughout the year. This summer we have implemented a new revision, and produced a User's Manual so that the pilot system can be made available to other practitioners and researchers. We have also designed, and partly implemented, a larger system capable of dealing with much more powerful heuristics.
    Keywords: Life Sciences (General)
    Type: NASA Summer Faculty Fellowship Program 2004, Volumes 1 and 2; 11-1 - 11-7; NASA/CR-2005-213690/VOL1/2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The relatively young technology of NanoSIMS is unlocking an exciting new level of information from organic matter in ancient sediments. We are using this technique to characterize Proterozoic organic material that is clearly biogenic as a guide for interpreting controversial organic structures in either terrestrial or extraterrestrial samples. NanoSIMS is secondary ion mass spectrometry for trace element and isotope analysis at sub-micron resolution. In 2005, Robert et al. [1] combined NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity of Precambrian structures. The ability of NanoSIMS to map simultaneously the distribution of organic elements with a 50 nm spatial resolution provides new biologic markers that could help define the timing of life s development on Earth. The current study corroborates the work of Robert et al. and builds on their study by using NanoSIMS to map C, N (as CN), S, Si and O of both excellently preserved microfossils and less well preserved, non-descript organics in Proterozoic chert from the ca. 0.8 Ga Bitter Springs Formation of Australia.
    Keywords: Life Sciences (General)
    Type: 37th Lunar and Planetary Research Conference; Mar 13, 2006 - Mar 17, 2006; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-11
    Description: We have used a NanoSIMS ion microprobe to map sub-micron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae from the approximately 0.85 Ga Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments reveal distinct wall-and sheath-like structures enriched in C, N and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibit filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N and S. By analogy to data from the well-preserved microfossils, these structures are interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Because the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings open a large body of generally neglected material to in situ structural, chemical, and isotopic study. Our results also offer new criteria for assessing biogenicity of problematic kerogenous materials and thus can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.
    Keywords: Life Sciences (General)
    Type: AST-06-0031
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...