ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (127)
  • 2005-2009  (127)
  • 1
    Publication Date: 2007-08-25
    Description: Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosado, Carlos J -- Buckle, Ashley M -- Law, Ruby H P -- Butcher, Rebecca E -- Kan, Wan-Ting -- Bird, Catherina H -- Ung, Kheng -- Browne, Kylie A -- Baran, Katherine -- Bashtannyk-Puhalovich, Tanya A -- Faux, Noel G -- Wong, Wilson -- Porter, Corrine J -- Pike, Robert N -- Ellisdon, Andrew M -- Pearce, Mary C -- Bottomley, Stephen P -- Emsley, Jonas -- Smith, A Ian -- Rossjohn, Jamie -- Hartland, Elizabeth L -- Voskoboinik, Ilia -- Trapani, Joseph A -- Bird, Phillip I -- Dunstone, Michelle A -- Whisstock, James C -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1548-51. Epub 2007 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717151" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Bacterial Proteins/*chemistry/metabolism ; Complement Membrane Attack Complex/chemistry/metabolism ; Crystallography, X-Ray ; Cytotoxins/chemistry ; Membrane Glycoproteins/chemistry/genetics/metabolism ; Molecular Sequence Data ; Perforin ; Photorhabdus/*chemistry ; Pore Forming Cytotoxic Proteins/chemistry/genetics/metabolism ; *Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Vertebrates
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-04-25
    Description: Escherichia coli AlkB and its human homologues ABH2 and ABH3 repair DNA/RNA base lesions by using a direct oxidative dealkylation mechanism. ABH2 has the primary role of guarding mammalian genomes against 1-meA damage by repairing this lesion in double-stranded DNA (dsDNA), whereas AlkB and ABH3 preferentially repair single-stranded DNA (ssDNA) lesions and can repair damaged bases in RNA. Here we show the first crystal structures of AlkB-dsDNA and ABH2-dsDNA complexes, stabilized by a chemical cross-linking strategy. This study reveals that AlkB uses an unprecedented base-flipping mechanism to access the damaged base: it squeezes together the two bases flanking the flipped-out one to maintain the base stack, explaining the preference of AlkB for repairing ssDNA lesions over dsDNA ones. In addition, the first crystal structure of ABH2, presented here, provides a structural basis for designing inhibitors of this human DNA repair protein.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587245/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587245/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Cai-Guang -- Yi, Chengqi -- Duguid, Erica M -- Sullivan, Christopher T -- Jian, Xing -- Rice, Phoebe A -- He, Chuan -- GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Apr 24;452(7190):961-5. doi: 10.1038/nature06889.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432238" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/analogs & derivatives/metabolism ; Binding Sites ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Damage ; DNA Repair ; DNA Repair Enzymes/*chemistry/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Dioxygenases/*chemistry/*metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Humans ; Mixed Function Oxygenases/*chemistry/*metabolism ; Models, Molecular ; Protein Binding ; RNA/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-10-31
    Description: AB(5) toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB(5) toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin's receptor is generated by metabolic incorporation of an exogenous factor derived from food.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723748/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723748/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Byres, Emma -- Paton, Adrienne W -- Paton, James C -- Lofling, Jonas C -- Smith, David F -- Wilce, Matthew C J -- Talbot, Ursula M -- Chong, Damien C -- Yu, Hai -- Huang, Shengshu -- Chen, Xi -- Varki, Nissi M -- Varki, Ajit -- Rossjohn, Jamie -- Beddoe, Travis -- R01 AI068715-01A1/AI/NIAID NIH HHS/ -- R01 AI068715-02/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Dec 4;456(7222):648-52. doi: 10.1038/nature07428. Epub 2008 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Crystallography Unit and ARC Centre of Excellence for Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18971931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Toxins/chemistry/genetics/*metabolism/*toxicity ; Cell Death/drug effects ; Cell Line ; Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry/genetics/metabolism/*toxicity ; Humans ; Mice ; Microscopy, Fluorescence ; Models, Molecular ; Neuraminic Acids/administration & dosage/*metabolism/pharmacology ; Polysaccharides/*chemistry/*metabolism ; Protein Binding ; Protein Subunits ; Shiga-Toxigenic Escherichia coli/chemistry/pathogenicity ; Sialic Acids/chemistry/metabolism ; Species Specificity ; Substrate Specificity ; Subtilisins/*chemistry/genetics/metabolism/*toxicity ; Survival Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-02-26
    Description: Apical membrane antigen 1 from Plasmodium is a leading malaria vaccine candidate. The protein is essential for host-cell invasion, but its molecular function is unknown. The crystal structure of the three domains comprising the ectoplasmic region of the antigen from P. vivax, solved at 1.8 angstrom resolution, shows that domains I and II belong to the PAN motif, which defines a superfamily of protein folds implicated in receptor binding. We also mapped the epitope of an invasion-inhibitory monoclonal antibody specific for the P. falciparum ortholog and modeled this to the structure. The location of the epitope and current knowledge on structure-function correlations for PAN domains together suggest a receptor-binding role during invasion in which domain II plays a critical part. These results are likely to aid vaccine and drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pizarro, Juan Carlos -- Vulliez-Le Normand, Brigitte -- Chesne-Seck, Marie-Laure -- Collins, Christine R -- Withers-Martinez, Chrislaine -- Hackett, Fiona -- Blackman, Michael J -- Faber, Bart W -- Remarque, Edmond J -- Kocken, Clemens H M -- Thomas, Alan W -- Bentley, Graham A -- MC_U117532063/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Apr 15;308(5720):408-11. Epub 2005 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite d'Immunologie Structurale, Centre National de la Recherche Scientifique, URA 2185, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731407" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/immunology ; Antigens, Protozoan/*chemistry/immunology ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Epitope Mapping ; Epitopes ; Heparin/metabolism ; Malaria Vaccines ; Membrane Proteins/*chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Plasmodium falciparum/chemistry/immunology ; Plasmodium vivax/chemistry/*immunology ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protozoan Proteins/*chemistry/immunology ; Recombinant Proteins/chemistry ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-11-15
    Description: We have identified a small-molecule inhibitor of tumor necrosis factor alpha (TNF-alpha) that promotes subunit disassembly of this trimeric cytokine family member. The compound inhibits TNF-alpha activity in biochemical and cell-based assays with median inhibitory concentrations of 22 and 4.6 micromolar, respectively. Formation of an intermediate complex between the compound and the intact trimer results in a 600-fold accelerated subunit dissociation rate that leads to trimer dissociation. A structure solved by x-ray crystallography reveals that a single compound molecule displaces a subunit of the trimer to form a complex with a dimer of TNF-alpha subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Molly M -- Smith, Annemarie Stroustrup -- Oslob, Johan D -- Flanagan, William M -- Braisted, Andrew C -- Whitty, Adrian -- Cancilla, Mark T -- Wang, Jun -- Lugovskoy, Alexey A -- Yoburn, Josh C -- Fung, Amy D -- Farrington, Graham -- Eldredge, John K -- Day, Eric S -- Cruz, Leslie A -- Cachero, Teresa G -- Miller, Stephan K -- Friedman, Jessica E -- Choong, Ingrid C -- Cunningham, Brian C -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1022-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sunesis Pharmaceuticals, Incorporated, 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284179" target="_blank"〉PubMed〈/a〉
    Keywords: Biotinylation ; Chemistry, Physical ; Crystallography, X-Ray ; Dimerization ; Fluorescence ; Hydrogen/chemistry ; Hydrophobic and Hydrophilic Interactions ; Indoles/chemical synthesis/*chemistry/*pharmacology ; Kinetics ; Mass Spectrometry ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Physicochemical Phenomena ; Protein Conformation ; Protein Subunits/chemistry ; Receptors, Tumor Necrosis Factor, Type I/metabolism ; Tumor Necrosis Factor-alpha/*antagonists & inhibitors/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-02-04
    Description: The urokinase plasminogen activator binds to its cellular receptor with high affinity and initiates signaling cascades that are implicated in pathological processes including tumor growth, metastasis, and inflammation. We report the crystal structure at 1.9 angstroms of the urokinase receptor complexed with the urokinase amino-terminal fragment and an antibody against the receptor. The three domains of urokinase receptor form a concave shape with a central cone-shaped cavity where the urokinase fragment inserts. The structure provides insight into the flexibility of the urokinase receptor that enables its interaction with a wide variety of ligands and a basis for the design of urokinase-urokinase receptor antagonists.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huai, Qing -- Mazar, Andrew P -- Kuo, Alice -- Parry, Graham C -- Shaw, David E -- Callahan, Jennifer -- Li, Yongdong -- Yuan, Cai -- Bian, Chuanbing -- Chen, Liqing -- Furie, Bruce -- Furie, Barbara C -- Cines, Douglas B -- Huang, Mingdong -- R01 HL086584/HL/NHLBI NIH HHS/ -- R01 HL086584-01/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 3;311(5761):656-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hemostasis and Thrombosis, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16456079" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies/chemistry/metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Peptide Fragments/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/immunology/metabolism ; Receptors, Urokinase Plasminogen Activator ; Urokinase-Type Plasminogen Activator/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-11-26
    Description: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA104838-05/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):739-44. doi: 10.1038/nature08617. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19935646" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/genetics ; Brain Neoplasms/*genetics/*metabolism/pathology ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Disease Progression ; Enzyme Assays ; Glioma/genetics/metabolism/pathology ; Glutarates/*metabolism ; Histidine/genetics/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Models, Molecular ; Mutant Proteins/*genetics/*metabolism ; Mutation/genetics ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-03-06
    Description: Osmoregulated transporters sense intracellular osmotic pressure and respond to hyperosmotic stress by accumulation of osmolytes to restore normal hydration levels. Here we report the determination of the X-ray structure of a member of the family of betaine/choline/carnitine transporters, the Na(+)-coupled symporter BetP from Corynebacterium glutamicum, which is a highly effective osmoregulated uptake system for glycine betaine. Glycine betaine is bound in a tryptophan box occluded from both sides of the membrane with aromatic side chains lining the transport pathway. BetP has the same overall fold as three unrelated Na(+)-coupled symporters. Whereas these are crystallized in either the outward-facing or the inward-facing conformation, the BetP structure reveals a unique intermediate conformation in the Na(+)-coupled transport cycle. The trimeric architecture of BetP and the break in three-fold symmetry by the osmosensing C-terminal helices suggest a regulatory mechanism of Na(+)-coupled osmolyte transport to counteract osmotic stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ressl, Susanne -- Terwisscha van Scheltinga, Anke C -- Vonrhein, Clemens -- Ott, Vera -- Ziegler, Christine -- England -- Nature. 2009 Mar 5;458(7234):47-52. doi: 10.1038/nature07819.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Biophysics, Department of Structural Biology, 60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19262666" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; Betaine/*metabolism ; Binding Sites ; Carrier Proteins/*chemistry/genetics/*metabolism ; Corynebacterium glutamicum/*chemistry/genetics ; Crystallography, X-Ray ; Ion Transport ; Models, Molecular ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Sodium/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-09-29
    Description: The CCR5 co-receptor binds to the HIV-1 gp120 envelope glycoprotein and facilitates HIV-1 entry into cells. Its N terminus is tyrosine-sulfated, as are many antibodies that react with the co-receptor binding site on gp120. We applied nuclear magnetic resonance and crystallographic techniques to analyze the structure of the CCR5 N terminus and that of the tyrosine-sulfated antibody 412d in complex with gp120 and CD4. The conformations of tyrosine-sulfated regions of CCR5 (alpha-helix) and 412d (extended loop) are surprisingly different. Nonetheless, a critical sulfotyrosine on CCR5 and on 412d induces similar structural rearrangements in gp120. These results now provide a framework for understanding HIV-1 interactions with the CCR5 N terminus during viral entry and define a conserved site on gp120, whose recognition of sulfotyrosine engenders posttranslational mimicry by the immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Chih-Chin -- Lam, Son N -- Acharya, Priyamvada -- Tang, Min -- Xiang, Shi-Hua -- Hussan, Syed Shahzad-Ul -- Stanfield, Robyn L -- Robinson, James -- Sodroski, Joseph -- Wilson, Ian A -- Wyatt, Richard -- Bewley, Carole A -- Kwong, Peter D -- P30 AI060354/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- U19 AI067854-03/AI/NIAID NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1930-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901336" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD4/*chemistry/immunology ; Crystallography, X-Ray ; HIV Antibodies/*chemistry/immunology ; HIV Envelope Protein gp120/*chemistry/immunology/metabolism ; HIV-1/metabolism ; Humans ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Peptide Fragments/chemistry/metabolism ; Receptors, CCR5/*chemistry/metabolism ; Sulfates/metabolism ; Tyrosine/metabolism ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-12-22
    Description: The guanine nucleotide exchange factor p63RhoGEF is an effector of the heterotrimeric guanine nucleotide-binding protein (G protein) Galphaq and thereby links Galphaq-coupled receptors (GPCRs) to the activation of the small-molecular-weight G protein RhoA. We determined the crystal structure of the Galphaq-p63RhoGEF-RhoA complex, detailing the interactions of Galphaq with the Dbl and pleckstrin homology (DH and PH) domains of p63RhoGEF. These interactions involve the effector-binding site and the C-terminal region of Galphaq and appear to relieve autoinhibition of the catalytic DH domain by the PH domain. Trio, Duet, and p63RhoGEF are shown to constitute a family of Galphaq effectors that appear to activate RhoA both in vitro and in intact cells. We propose that this structure represents the crux of an ancient signal transduction pathway that is expected to be important in an array of physiological processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lutz, Susanne -- Shankaranarayanan, Aruna -- Coco, Cassandra -- Ridilla, Marc -- Nance, Mark R -- Vettel, Christiane -- Baltus, Doris -- Evelyn, Chris R -- Neubig, Richard R -- Wieland, Thomas -- Tesmer, John J G -- HL071818/HL/NHLBI NIH HHS/ -- HL086865/HL/NHLBI NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1923-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18096806" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11/*chemistry/metabolism ; Guanine Nucleotide Exchange Factors/*chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rho Guanine Nucleotide Exchange Factors ; Signal Transduction ; rhoA GTP-Binding Protein/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...