ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-08-16
    Description: The Vibrio cholerae bacterium causes devastating diarrhea when it infects the human intestine. The key event is adenosine diphosphate (ADP)-ribosylation of the human signaling protein GSalpha, catalyzed by the cholera toxin A1 subunit (CTA1). This reaction is allosterically activated by human ADP-ribosylation factors (ARFs), a family of essential and ubiquitous G proteins. Crystal structures of a CTA1:ARF6-GTP (guanosine triphosphate) complex reveal that binding of the human activator elicits dramatic changes in CTA1 loop regions that allow nicotinamide adenine dinucleotide (NAD+) to bind to the active site. The extensive toxin:ARF-GTP interface surface mimics ARF-GTP recognition of normal cellular protein partners, which suggests that the toxin has evolved to exploit promiscuous binding properties of ARFs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neal, Claire J -- Jobling, Michael G -- Holmes, Randall K -- Hol, Wim G J -- AI-31940/AI/NIAID NIH HHS/ -- AI-34501/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1093-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099990" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/*chemistry/genetics/*metabolism ; Amino Acid Sequence ; Binding Sites ; Cholera Toxin/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Dimerization ; Evolution, Molecular ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/*chemistry/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; NAD/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...