ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-04
    Description: Protein-RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3' untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597294/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597294/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Licatalosi, Donny D -- Mele, Aldo -- Fak, John J -- Ule, Jernej -- Kayikci, Melis -- Chi, Sung Wook -- Clark, Tyson A -- Schweitzer, Anthony C -- Blume, John E -- Wang, Xuning -- Darnell, Jennifer C -- Darnell, Robert B -- MC_U105185858/Medical Research Council/United Kingdom -- R01 NS034389/NS/NINDS NIH HHS/ -- R01 NS034389-09/NS/NINDS NIH HHS/ -- R01 NS034389-10/NS/NINDS NIH HHS/ -- R01 NS034389-11/NS/NINDS NIH HHS/ -- R01 NS034389-12/NS/NINDS NIH HHS/ -- R01 NS034389-13A1/NS/NINDS NIH HHS/ -- R01 NS040955/NS/NINDS NIH HHS/ -- R01 NS040955-05/NS/NINDS NIH HHS/ -- R01 NS34389/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Nov 27;456(7221):464-9. doi: 10.1038/nature07488. Epub 2008 Nov 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18978773" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/*genetics ; Animals ; Antigens, Neoplasm/genetics/*metabolism ; Cell Line ; Cross-Linking Reagents/chemistry/metabolism ; Exons/genetics ; Genome/*genetics ; Genomics ; Humans ; Immunoprecipitation ; Mice ; Neocortex/*cytology ; Neurons/*metabolism ; Organ Specificity ; Polyadenylation/genetics ; RNA, Messenger/genetics/*metabolism ; RNA-Binding Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-06-19
    Description: MicroRNAs (miRNAs) have critical roles in the regulation of gene expression; however, as miRNA activity requires base pairing with only 6-8 nucleotides of messenger RNA, predicting target mRNAs is a major challenge. Recently, high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) has identified functional protein-RNA interaction sites. Here we use HITS-CLIP to covalently crosslink native argonaute (Ago, also called Eif2c) protein-RNA complexes in mouse brain. This produced two simultaneous data sets-Ago-miRNA and Ago-mRNA binding sites-that were combined with bioinformatic analysis to identify interaction sites between miRNA and target mRNA. We validated genome-wide interaction maps for miR-124, and generated additional maps for the 20 most abundant miRNAs present in P13 mouse brain. Ago HITS-CLIP provides a general platform for exploring the specificity and range of miRNA action in vivo, and identifies precise sequences for targeting clinically relevant miRNA-mRNA interactions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733940/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733940/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chi, Sung Wook -- Zang, Julie B -- Mele, Aldo -- Darnell, Robert B -- R01 NS034389/NS/NINDS NIH HHS/ -- R01 NS034389-14/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 23;460(7254):479-86. doi: 10.1038/nature08170. Epub 2009 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536157" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cross-Linking Reagents/chemistry/metabolism ; *Gene Expression Regulation ; HeLa Cells ; Humans ; Immunoprecipitation/*methods ; Mice ; MicroRNAs/*metabolism ; Protein Interaction Mapping ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...