ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Evolution, Molecular  (1)
  • *Selection, Genetic  (1)
  • 2/chemistry/genetics/*metabolism  (1)
  • 2005-2009  (2)
  • 1
    Publication Date: 2008-04-19
    Description: Sequencing DNA from several organisms has revealed that duplication and drift of existing genes have primarily moulded the contents of a given genome. Though the effect of knocking out or overexpressing a particular gene has been studied in many organisms, no study has systematically explored the effect of adding new links in a biological network. To explore network evolvability, we constructed 598 recombinations of promoters (including regulatory regions) with different transcription or sigma-factor genes in Escherichia coli, added over a wild-type genetic background. Here we show that approximately 95% of new networks are tolerated by the bacteria, that very few alter growth, and that expression level correlates with factor position in the wild-type network hierarchy. Most importantly, we find that certain networks consistently survive over the wild type under various selection pressures. Therefore new links in the network are rarely a barrier for evolution and can even confer a fitness advantage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666274/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666274/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Isalan, Mark -- Lemerle, Caroline -- Michalodimitrakis, Konstantinos -- Horn, Carsten -- Beltrao, Pedro -- Raineri, Emanuele -- Garriga-Canut, Mireia -- Serrano, Luis -- 066543/Wellcome Trust/United Kingdom -- England -- Nature. 2008 Apr 17;452(7189):840-5. doi: 10.1038/nature06847.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, 08003 Barcelona, Spain. isalan@crg.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18421347" target="_blank"〉PubMed〈/a〉
    Keywords: Escherichia coli/*genetics/growth & development/*metabolism ; Escherichia coli Proteins/genetics/metabolism ; *Evolution, Molecular ; Gene Expression Regulation, Bacterial/*genetics ; Gene Regulatory Networks/*genetics ; Genes, Bacterial/genetics ; *Genetic Engineering ; Heat-Shock Response ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames/genetics ; Promoter Regions, Genetic/genetics ; *Selection, Genetic ; Serial Passage ; Sigma Factor/genetics/metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-17
    Description: Chondroitin sulfate proteoglycans (CSPGs) present a barrier to axon regeneration. However, no specific receptor for the inhibitory effect of CSPGs has been identified. We showed that a transmembrane protein tyrosine phosphatase, PTPsigma, binds with high affinity to neural CSPGs. Binding involves the chondroitin sulfate chains and a specific site on the first immunoglobulin-like domain of PTPsigma. In culture, PTPsigma(-/-) neurons show reduced inhibition by CSPG. A PTPsigma fusion protein probe can detect cognate ligands that are up-regulated specifically at neural lesion sites. After spinal cord injury, PTPsigma gene disruption enhanced the ability of axons to penetrate regions containing CSPG. These results indicate that PTPsigma can act as a receptor for CSPGs and may provide new therapeutic approaches to neural regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Yingjie -- Tenney, Alan P -- Busch, Sarah A -- Horn, Kevin P -- Cuascut, Fernando X -- Liu, Kai -- He, Zhigang -- Silver, Jerry -- Flanagan, John G -- R01 EY011559/EY/NEI NIH HHS/ -- R01 NS025713/NS/NINDS NIH HHS/ -- R37 HD029417/HD/NICHD NIH HHS/ -- R37 NS025713/NS/NINDS NIH HHS/ -- R37 NS025713-22/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 23;326(5952):592-6. doi: 10.1126/science.1178310. Epub 2009 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19833921" target="_blank"〉PubMed〈/a〉
    Keywords: Aggrecans/metabolism ; Animals ; Astrocytes/metabolism ; Axons/physiology ; Binding Sites ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/chemistry/*metabolism ; Chondroitin Sulfates/metabolism ; Female ; Ganglia, Spinal/cytology/metabolism ; Ligands ; Mice ; *Nerve Regeneration ; Nerve Tissue Proteins/chemistry/*metabolism ; Neurites/physiology ; Neurons/*physiology ; Protein Binding ; Protein Interaction Domains and Motifs ; Proteoglycans/chemistry/*metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class ; 2/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Spinal Cord/metabolism/pathology ; Spinal Cord Injuries/*metabolism/pathology/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...