ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-06-24
    Description: The heart is formed from cardiogenic progenitors expressing the transcription factors Nkx2-5 and Isl1 (refs 1 and 2). These multipotent progenitors give rise to cardiomyocyte, smooth muscle and endothelial cells, the major lineages of the mature heart. Here we identify a novel cardiogenic precursor marked by expression of the transcription factor Wt1 and located within the epicardium-an epithelial sheet overlying the heart. During normal murine heart development, a subset of these Wt1(+) precursors differentiated into fully functional cardiomyocytes. Wt1(+) proepicardial cells arose from progenitors that express Nkx2-5 and Isl1, suggesting that they share a developmental origin with multipotent Nkx2-5(+) and Isl1(+) progenitors. These results identify Wt1(+) epicardial cells as previously unrecognized cardiomyocyte progenitors, and lay the foundation for future efforts to harness the cardiogenic potential of these progenitors for cardiac regeneration and repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Bin -- Ma, Qing -- Rajagopal, Satish -- Wu, Sean M -- Domian, Ibrahim -- Rivera-Feliciano, Jose -- Jiang, Dawei -- von Gise, Alexander -- Ikeda, Sadakatsu -- Chien, Kenneth R -- Pu, William T -- P50 HL074734/HL/NHLBI NIH HHS/ -- P50 HL074734-05/HL/NHLBI NIH HHS/ -- England -- Nature. 2008 Jul 3;454(7200):109-13. doi: 10.1038/nature07060. Epub 2008 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Stem Cell Institute and Department of Cardiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18568026" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; *Cell Lineage ; Gene Expression Regulation, Developmental ; Green Fluorescent Proteins/genetics/metabolism ; Heart/*embryology ; Homeodomain Proteins/genetics/metabolism ; Mice ; Myocytes, Cardiac/*cytology/metabolism ; Pericardium/*cytology/embryology/metabolism ; Stem Cells/*cytology/metabolism ; Transcription Factors/genetics/metabolism ; WT1 Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-03
    Description: Mitochondria are integral components of cellular calcium (Ca2+) signaling. Calcium stimulates mitochondrial adenosine 5'-triphosphate production, but can also initiate apoptosis. In turn, cytoplasmic Ca2+ concentrations are regulated by mitochondria. Although several transporter and ion-channel mechanisms have been measured in mitochondria, the molecules that govern Ca2+ movement across the inner mitochondrial membrane are unknown. We searched for genes that regulate mitochondrial Ca2+ and H+ concentrations using a genome-wide Drosophila RNA interference (RNAi) screen. The mammalian homolog of one Drosophila gene identified in the screen, Letm1, was found to specifically mediate coupled Ca2+/H+ exchange. RNAi knockdown, overexpression, and liposome reconstitution of the purified Letm1 protein demonstrate that Letm1 is a mitochondrial Ca2+/H+ antiporter.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Dawei -- Zhao, Linlin -- Clapham, David E -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Oct 2;326(5949):144-7. doi: 10.1126/science.1175145.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Howard Hughes Medical Institute, Children's Hospital Boston, Manton Center for Orphan Disease, and Department of Neurobiology, Harvard Medical School, Enders Building 1309, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19797662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiporters/*genetics/metabolism ; Calcium/*metabolism ; Calcium-Binding Proteins/*genetics/*metabolism ; Cation Transport Proteins/genetics/metabolism ; Cell Line ; Drosophila Proteins/*genetics/metabolism ; Drosophila melanogaster/*genetics/metabolism ; Genome, Human ; Genome, Insect ; HeLa Cells ; Humans ; Hydrogen/metabolism ; Hydrogen-Ion Concentration ; Ion Transport ; Membrane Potential, Mitochondrial ; Membrane Proteins/*genetics/*metabolism ; Mitochondria/*metabolism ; Mitochondrial Membranes/metabolism ; Mitochondrial Proteins/genetics/*metabolism ; Proteolipids/metabolism ; *RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...