ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-03-06
    Description: Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth1, 2. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology3, 4, 5. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (approx40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-23
    Description: Despite similar physical properties, the Northern and Southern Atlantic subtropical gyres have different biogeochemical regimes. The Northern subtropical gyre, which is subject to iron deposition from Saharan dust1, is depleted in the nutrient phosphate, possibly as a result of iron-enhanced nitrogen fixation2. Although phosphate depleted, rates of carbon fixation in the euphotic zone of the North Atlantic subtropical gyre are comparable to those of the South Atlantic subtropical gyre3, which is not phosphate limited. Here we use the activity of the phosphorus-specific enzyme alkaline phosphatase to show potentially enhanced utilization of dissolved organic phosphorus occurring over much of the North Atlantic subtropical gyre. We find that during the boreal spring up to 30% of primary production in the North Atlantic gyre is supported by dissolved organic phosphorus. Our diagnostics and composite map of the surface distribution of dissolved organic phosphorus in the subtropical Atlantic Ocean reveal shorter residence times in the North Atlantic gyre than the South Atlantic gyre. We interpret the asymmetry of dissolved organic phosphorus cycling in the two gyres as a consequence of enhanced nitrogen fixation in the North Atlantic Ocean4, which forces the system towards phosphorus limitation. We suggest that dissolved organic phosphorus utilization may contribute to primary production in other phosphorus-limited ocean settings as well.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-26
    Description: Resolving flow geometry in the mantle wedge is central to understanding the thermal and chemical structure of subduction zones, subducting plate dehydration, and melting that leads to arc volcanism, which can threaten large populations and alter climate through gas and particle emission. Here we show that isotope geochemistry and seismic velocity anisotropy provide strong evidence for trench-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. This finding contradicts classical models, which predict trench-normal flow owing to the overlying wedge mantle being dragged downwards by the subducting plate. The isotopic signature of central Costa Rican volcanic rocks is not consistent with its derivation from the mantle wedge1, 2, 3 or eroded fore-arc complexes4 but instead from seamounts of the Galapagos hotspot track on the subducting Cocos plate. This isotopic signature decreases continuously from central Costa Rica to northwestern Nicaragua. As the age of the isotopic signature beneath Costa Rica can be constrained and its transport distance is known, minimum northwestward flow rates can be estimated (63–190 mm yr-1) and are comparable to the magnitude of subducting Cocos plate motion (approx85 mm yr-1). Trench-parallel flow needs to be taken into account in models evaluating thermal and chemical structure and melt generation in subduction zones.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: In the context of gradual Cenozoic cooling, the timing of the onset of significant Northern Hemisphere glaciation 2.7 million years ago is consistent with Milankovitch's orbital theory, which posited that ice sheets grow when polar summertime insolation and temperature are low. However, the role of moisture supply in the initiation of large Northern Hemisphere ice sheets has remained unclear. The subarctic Pacific Ocean represents a significant source of water vapour to boreal North America, but it has been largely overlooked in efforts to explain Northern Hemisphere glaciation. Here we present alkenone unsaturation ratios and diatom oxygen isotope ratios from a sediment core in the western subarctic Pacific Ocean, indicating that 2.7 million years ago late-summer sea surface temperatures in this ocean region rose in response to an increase in stratification. At the same time, winter sea surface temperatures cooled, winter floating ice became more abundant and global climate descended into glacial conditions. We suggest that the observed summer warming extended into the autumn, providing water vapour to northern North America, where it precipitated and accumulated as snow, and thus allowed the initiation of Northern Hemisphere glaciation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-18
    Description: The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic1, and surface-temperature and rainfall variations over North America2, Europe3 and northern Africa4. Although these multidecadal variations are potentially predictable if the current state of the ocean is known5, 6, 7, the lack of subsurface ocean observations8 that constrain this state has been a limiting factor for realizing the full skill potential of such predictions9. Here we apply a simple approach—that uses only sea surface temperature (SST) observations—to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state10, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-02-22
    Description: Oceanic fixed-nitrogen concentrations are controlled by the balance between nitrogen fixation and denitrification. A number of factors, including iron limitation, can restrict nitrogen fixation, introducing the potential for decoupling of nitrogen inputs and losses. Such decoupling could significantly affect the oceanic fixed-nitrogen inventory and consequently the biological component of ocean carbon storage and hence air–sea partitioning of carbon dioxide. However, the extent to which nutrients limit nitrogen fixation in the global ocean is uncertain. Here, we examined rates of nitrogen fixation and nutrient concentrations in the surface waters of the Atlantic Ocean along a north–south 10,000 km transect during October and November 2005. We show that rates of nitrogen fixation were markedly higher in the North Atlantic compared with the South Atlantic Ocean. Across the two basins, nitrogen fixation was positively correlated with dissolved iron and negatively correlated with dissolved phosphorus concentrations. We conclude that inter-basin differences in nitrogen fixation are controlled by iron supply rather than phosphorus availability. Analysis of the nutrient content of deep waters suggests that the fixed nitrogen enters North Atlantic Deep Water. Our study thus supports the suggestion that iron significantly influences nitrogen fixation5, and that subsequent interactions with ocean circulation patterns contribute to the decoupling of nitrogen fixation and loss.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-07
    Description: Large uncertainties remain in the current and future contribution to sea level rise from Antarctica. Climate warming may increase snowfall in the continent’s interior1,2,3, but enhance glacier discharge at the coast where warmer air and ocean temperatures erode the buttressing ice shelves4,5,6,7,8,9,10,11. Here, we use satellite interferometric synthetic-aperture radar observations from 1992 to 2006 covering 85% of Antarctica’s coastline to estimate the total mass flux into the ocean. We compare the mass fluxes from large drainage basin units with interior snow accumulation calculated from a regional atmospheric climate model for 1980 to 2004. In East Antarctica, small glacier losses in Wilkes Land and glacier gains at the mouths of the Filchner and Ross ice shelves combine to a near-zero loss of 4±61 Gt yr−1. In West Antarctica, widespread losses along the Bellingshausen and Amundsen seas increased the ice sheet loss by 59% in 10 years to reach 132±60 Gt yr−1 in 2006. In the Peninsula, losses increased by 140% to reach 60±46 Gt yr−1 in 2006. Losses are concentrated along narrow channels occupied by outlet glaciers and are caused by ongoing and past glacier acceleration. Changes in glacier flow therefore have a significant, if not dominant impact on ice sheet mass balance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...