ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined the degree of mesoscale (km), finescale (m), and microscale (cm) patchiness of ciliates and their prey in waters of varying hydrographic conditions. Samples were taken throughout the water column, along a transect across the Irish Sea (54°N), at scales ranging from 0.15 to 105 m. We examined physical, chemical, and biological characteristics. The eastern and western Irish Sea were stratified, with a pycnocline at ∼20 to 30 m. The central waters were mixed and had adjacent frontal regions. Euphotic depth was ∼20 to 35 m. Generally, the upper waters were nitrogen-limited, with elevated levels associated with frontal regions and deeper waters. Microphytoplankton exhibited fine-mesoscale patchiness: diatom numbers were low in stratified waters, with higher levels in mixed and frontal regions; dinoflagellates were abundant in subsurface waters near the fronts. Nanoflagellate numbers and biomass decreased with depth below the pycnocline, and exhibited microscale distribution in upper waters; these micropatches may provide increased food levels for ciliates. Microscale distribution of ciliates was rare and only occurred at mixed/frontal sites; finescale ciliate patches were a more prominent feature of the water column. These finescale patches can be composed of a variety of taxa but can also be virtually monospecific. Finescale patches may produce localised regions of high productivity that is available to fishes and copepods, but may also be a sink, as patches can be short-lived and thus unavailable to predators.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-15
    Description: Calcifying marine phytoplankton—coccolithophores— are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know "why" coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-24
    Description: Current carbon dioxide emissions are an assumed threat to oceanic calcifying plankton (coccolithophores) not just due to rising sea-surface temperatures, but also because of ocean acidification (OA). This assessment is based on single species culture experiments that are now revealing complex, synergistic, and adaptive responses to such environmental change. Despite this complexity, there is still a widespread perception that coccolithophore calcification will be inhibited by OA. These plankton have an excellent fossil record, and so we can test for the impact of OA during geological carbon cycle events, providing the added advantages of exploring entire communities across real-world major climate perturbation and recovery. Here we target fossil coccolithophore groups (holococcoliths and braarudosphaerids) expected to exhibit greatest sensitivity to acidification because of their reliance on extracellular calcification. Across the Paleocene-Eocene Thermal Maximum (56 Ma) rapid warming event, the biogeography and abundance of these extracellular calcifiers shifted dramatically, disappearing entirely from low latitudes to become limited to cooler, lower saturation-state areas. By comparing these range shift data with the environmental parameters from an Earth system model, we show that the principal control on these range retractions was temperature, with survival maintained in high-latitude refugia, despite more adverse ocean chemistry conditions. Deleterious effects of OA were only evidenced when twinned with elevated temperatures.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-28
    Description: In regions where dinoflagellates dominate bioluminescent emissions, diurnal variations in bioluminescence potential (BPOT) can be influenced by both exogenous and endogenous factors. In summer 2009, measurements were made in the north-east Atlantic to examine the diurnal variations in BPOT in natural dinoflagellate communities and determine the influence of circadian regulation and light exposure. The maximum night BPOT was 〉23 times greater than the daytime levels for the same populations. Photosynthetic species were responsible for 55–75% of measured BPOT based on calculated light budgets. Under continual darkness, diurnal variability of BPOT was retained over a 48-h period, demonstrating a degree of circadian control. Results suggest that both photosynthetic and heterotrophic dinoflagellates exhibit circadian regulation of their bioluminescent capacity and light strongly influences the diurnal variation of BPOT. Circadian rhythms were photo-entrained to the phase of the natural photoperiod and light further inhibited daytime bioluminescence. Maximum night BPOT was significantly correlated with the previous day integrated photosynthetically active radiation (PAR) suggesting photo-enhancement within natural populations. A 21% decrease in integrated PAR was associated with a 26–29% decrease in maximum night BPOT for constant populations. Maximum night BPOT was damped by up to 73% when organisms were kept in constant darkness. Findings further quantify diurnal variations in BPOT in natural dinoflagellate populations and their relation to a number of taxonomic, cellular and environmental factors. Results emphasize the importance of considering the recent light history of bioluminescent communities when analysing or predicting in situ BPOT.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-11-17
    Description: Polyploidy is a well-described trait in some prokaryotic organisms; however, it is unusual in marine microbes from oligotrophic environments, which typically display a tendency towards genome streamlining. The biogeochemically significant diazotrophic cyanobacterium Trichodesmium is a potential exception. With a relatively large genome and a comparatively high proportion of non-protein-coding DNA, Trichodesmium appears to allocate relatively more resources to genetic material than closely related organisms and microbes within the same environment. Through simultaneous analysis of gene abundance and direct cell counts, we show for the first time that Trichodesmium spp. can also be highly polyploid, containing as many as 100 genome copies per cell in field-collected samples and 〉600 copies per cell in laboratory cultures. These findings have implications for the widespread use of the abundance of the nifH gene (encoding a subunit of the N 2 -fixing enzyme nitrogenase) as an approach for quantifying the abundance and distribution of marine diazotrophs. Moreover, polyploidy may combine with the unusual genomic characteristics of this genus both in reflecting evolutionary dynamics and influencing phenotypic plasticity and ecological resilience.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-06-16
    Print ISSN: 0025-3162
    Electronic ISSN: 1432-1793
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-15
    Description: Coccolithophore contributions to the global marine carbon cycle are regulated by the calcite content of their scales (coccoliths), and the relative cellular levels of photosynthesis and calcification. All three of these factors vary between coccolithophore species, and with response to the growth environment. Here, water samples were collected in the northern basin of the South China Sea (SCS) during summer 2014 in order to examine how environmental variability influenced species composition and cellular levels of calcite content. The vertical structure of the coccolithophore community was strongly regulated by mesoscale eddies. All living coccolithophores produced within the euphotic zone (1 % of surface irradiance), and Florisphaera profunda was a substantial coccolithophore and coccolith-calcite producer in the Deep Chlorophyll-a Maximum (DCM), especially in most oligotrophic anti-cyclonic eddy centers. Placolith-bearing coccolithophores, plus F. profunda, and other larger and numerically rare species made almost equal contributions to coccolith-based calcite in the water column. For Emiliania huxleyi biometry measurements, coccolith size positively correlated with nutrients, and it is suggested that coccolith length is influenced by nutrient and light related growth rates. However, larger sized coccoliths were related to low pH and calcite saturation, although it is not a simple cause and effect relationship. Genotypic or ecophenotypic variation may also be linked to coccolith size variation.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-06
    Description: The spring bloom is a key annual event in the phenology of pelagic ecosystems, making a major contribution to the oceanic biological carbon pump through the production and export of organic carbon. However, there is little consensus as to the main drivers of spring bloom formation, exacerbated by a lack of in situ observations of the phytoplankton community composition and its evolution during this critical period. We investigated the dynamics of the phytoplankton community structure at two contrasting sites in the Iceland and Norwegian Basins during the early stage (25 March–25 April) of the 2012 North Atlantic spring bloom. The plankton composition and characteristics of the initial stages of the bloom were markedly different between the two basins. The Iceland Basin (ICB) appeared well mixed to 〉 400 m, yet surface chlorophyll a (0.27–2.2 mg m–3) and primary production (0.06–0.66 mmol C m–3 d–1) were elevated in the upper 100 m. Although the Norwegian Basin (NWB) had a persistently shallower mixed layer (〈 100 m), chlorophyll a (0.58–0.93 mg m–3) and primary production (0.08–0.15 mmol C m–3 d–1) remained lower than in the ICB, with picoplankton (〉 2 μm) dominating chlorophyll a biomass. The ICB phytoplankton composition appeared primarily driven by the physicochemical environment, with periodic events of increased mixing restricting further increases in biomass. In contrast, the NWB phytoplankton community was potentially limited by physicochemical and/or biological factors such as grazing. Diatoms dominated the ICB, with the genus Chaetoceros (1–166 cells mL–1) being succeeded by Pseudo-nitzschia (0.2–210 cells mL–1). However, large diatoms (〉 10 μm) were virtually absent (〈 0.5 cells mL–1) from the NWB, with only small nanno-sized (〈 5 μm) diatoms present (101–600 cells mL–1). We suggest micro-zooplankton grazing, potentially coupled with the lack of a seed population of bloom forming diatoms, was restricting diatom growth in the NWB, and that large diatoms may be absent in NWB spring blooms. Despite both phytoplankton communities being in the early stages of bloom formation, different physicochemical and biological factors controlled bloom formation at the two sites. If these differences in phytoplankton composition persist, the subsequent spring blooms are likely to be significantly different in terms of biogeochemistry and trophic interactions throughout the growth season, with important implications for carbon cycling and organic matter export.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2012-08-31
    Description: Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73) Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1) Tg C from cell counts and to 89 (43–150) Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (doi:10.1594/PANGAEA.774851).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...