ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-04-04
    Description: Multidrug resistance (MDR) is a serious complication during treatment of opportunistic fungal infections that frequently afflict immunocompromised individuals, such as transplant recipients and cancer patients undergoing cytotoxic chemotherapy. Improved knowledge of the molecular pathways controlling MDR in pathogenic fungi should facilitate the development of novel therapies to combat these intransigent infections. MDR is often caused by upregulation of drug efflux pumps by members of the fungal zinc-cluster transcription-factor family (for example Pdr1p orthologues). However, the molecular mechanisms are poorly understood. Here we show that Pdr1p family members in Saccharomyces cerevisiae and the human pathogen Candida glabrata directly bind to structurally diverse drugs and xenobiotics, resulting in stimulated expression of drug efflux pumps and induction of MDR. Notably, this is mechanistically similar to regulation of MDR in vertebrates by the PXR nuclear receptor, revealing an unexpected functional analogy of fungal and metazoan regulators of MDR. We have also uncovered a critical and specific role of the Gal11p/MED15 subunit of the Mediator co-activator and its activator-targeted KIX domain in antifungal/xenobiotic-dependent regulation of MDR. This detailed mechanistic understanding of a fungal nuclear receptor-like gene regulatory pathway provides novel therapeutic targets for the treatment of multidrug-resistant fungal infections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thakur, Jitendra K -- Arthanari, Haribabu -- Yang, Fajun -- Pan, Shih-Jung -- Fan, Xiaochun -- Breger, Julia -- Frueh, Dominique P -- Gulshan, Kailash -- Li, Darrick K -- Mylonakis, Eleftherios -- Struhl, Kevin -- Moye-Rowley, W Scott -- Cormack, Brendan P -- Wagner, Gerhard -- Naar, Anders M -- A1046223/PHS HHS/ -- CA127990/CA/NCI NIH HHS/ -- EB2026/EB/NIBIB NIH HHS/ -- GM071449/GM/NIGMS NIH HHS/ -- GM30186/GM/NIGMS NIH HHS/ -- GM47467/GM/NIGMS NIH HHS/ -- GM49825/GM/NIGMS NIH HHS/ -- R01 CA127990/CA/NCI NIH HHS/ -- England -- Nature. 2008 Apr 3;452(7187):604-9. doi: 10.1038/nature06836.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18385733" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antifungal Agents/metabolism/pharmacology ; Candida glabrata/drug effects/genetics/*metabolism ; DNA-Binding Proteins/chemistry/genetics/metabolism ; *Drug Resistance, Fungal/genetics ; Fungal Proteins/chemistry/genetics/*metabolism ; *Gene Expression Regulation, Fungal/genetics ; Genes, Fungal/genetics ; Mediator Complex ; Multigene Family ; Protein Structure, Tertiary ; Receptors, Steroid/*metabolism ; Saccharomyces cerevisiae/drug effects/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism ; Trans-Activators/chemistry/genetics/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic/genetics ; Xenobiotics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-03-11
    Description: The living Laotian rodent Laonastes aenigmamus, first described in early 2005, has been interpreted as the sole member of the new family Laonastidae on the basis of its distinctive morphology and apparent phylogenetic isolation from other living rodents. Here we show that Laonastes is actually a surviving member of the otherwise extinct rodent family Diatomyidae, known from early Oligocene to late Miocene sites in Pakistan, India, Thailand, China, and Japan. Laonastes is a particularly striking example of the "Lazarus effect" in Recent mammals, whereby a taxon that was formerly thought to be extinct is rediscovered in the extant biota, in this case after a temporal gap of roughly 11 million years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, Mary R -- Marivaux, Laurent -- Li, Chuan-Kui -- Beard, K Christopher -- Metais, Gregoire -- New York, N.Y. -- Science. 2006 Mar 10;311(5766):1456-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, USA. dawsonm@carnegiemnh.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16527978" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asia ; *Biological Evolution ; Bone and Bones/anatomy & histology ; Mandible/anatomy & histology ; Phylogeny ; *Rodentia/anatomy & histology/classification ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...