ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism  (8)
  • Elsevier  (8)
  • American Institute of Physics
  • Nature Publishing Group
  • 2005-2009  (8)
  • 1980-1984
  • 1970-1974
  • 1950-1954
Collection
Publisher
Years
  • 2005-2009  (8)
  • 1980-1984
  • 1970-1974
  • 1950-1954
Year
  • 1
    Publication Date: 2017-04-04
    Description: The transport, degassing and atmospheric release of halogens from active volcanism on Earth have been the 12 focus of increasing interest over the last few decades, and have recently been the subject of the 1st workshop 13 on “Halogens in volcanic systems and their environmental impacts” that was held in December of 2007 at 14 Yosemite Lodge in Yosemite National Park, California. As an introduction to this Chemical Geology special 15 issue, collecting contributions from many of the participants at the workshop, we review here recent 16 advances in this field, including experimental and theoretical investigations of halogen behaviour in volcanic 17 and related magmatic systems. We discuss previous research on several aspects of halogen geochemistry, 18 including halogen abundances in the mantle and magmas on Earth; the effects of halogens on phase 19 equilibria and melt viscosities; their partitioning between melt and fluid phase(s) upon decompression, 20 cooling and crystallisation of magmas in the ^ Earth's crust; and their final atmospheric release as volcanic 21 gases. The role of halogens in the genesis of hydrothermal systems and in the transport of ore-forming metals 22 is also reviewed, and we discuss our current understanding of atmospheric processing of volcanic halogens in 23 both the troposphere and stratosphere, and their consequent impacts. In spite of these recent advancements, 24 our current understanding of halogen geochemistry at active volcanoes is still far too fragmentary, and the 25 key questions that require answers from future research are summarised in our conclusions.
    Description: PRIN 2008 and DPC-INGV 1381 2007-2009 grants; NSERC Dis- 1382 covery grant; NSF award EAR 0308866
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Halogens ; Volcanic gas ; Ore deposits ; Atmospheric effects ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: To visualize the behavior of erupting magma in volcanic conduits, we performed shock tube experiments on the ductile–brittle response of a viscoelastic medium to diffusion-driven bubble expansion. A sample of shear-thinning magma analogue is saturated by gas Ar under high pressure. On rapid decompression, Ar supersaturation causes bubbles to nucleate, grow, and coalesce in the sample, forcing it to expand, flow, and fracture. Experimental variables include saturation pressure and duration, and shape and lubrication of the flow path. Bubble growth in the experiments controls both flow and fracturing, and is consistent with physical models of magma vesiculation. Two types of fractures are observed: i) sharp fractures along the uppermost rim of the sample, and ii) fractures pervasively diffused throughout the sample. Rim fractures open when shear stress accumulates and strain rate is highest at the margin of the flow (a process already inferred from observations and models to occur in magma). Pervasive fractures originate when wall-friction retards expansion of the sample, causing pressure to build-up in the bubbles. When bubble pressure overcomes wall-friction and the tensile strength of the porous sample, fractures open with a range of morphologies. Both types of fracture open normally to flow direction, and both may heal as the flow proceeds. These experiments also illustrate how the development of pervasive fractures allows exsolving gas to escape from the sample before the generation of a permeable network via other processes, e.g., bubble coalescence. This is an observation that potentially impact the degassing of magma and the transition between explosive and effusive eruptions.
    Description: Published
    Description: 771-785
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic conduit ; analogue experiment ; vesiculation ; fragmentation ; degassing ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: Volcanic eruptions are characterized by intense degassing, thus it is imperative to have high quality laboratory data to constrain degassing mechanisms. In order to investigate bubble formation and growth at 1 atm, degassing experiments using a Stromboli basalt were performed on the GSECARS X-ray beamline at the Advanced Photon Source. Volatile-bearing glasses were synthesized at 1250 °C and 1000 MPa in a piston cylinder with H2O or mixtures of H2O+CO2; they were then heated in-situ on the X-ray beamline at 1 atm. Bubble growth was observed in-situ using X-ray radiography. The 3D bubble size distributions in the quenched samples and a natural Stromboli pumice were studied by synchrotron X-ray microtomography. The results show that bubble nucleation and growth in basaltic melts are volatile-concentration dependent. Bubbles can easily form in melts initially containing high volatile concentrations. The effect of CO2 on bubble nucleation and growth becomes significant at large CO2 concentrations of 880 to 1480 ppm, but is not important at lower concentrations. Multiple nucleation events occur in most of these degassing experiments, and they are more pronounced in more supersaturated melts. Bubble growth is controlled by viscosity near glass transition temperatures and by diffusion at higher temperatures. Bubbles begin to pop 10 to 20 s after a foam is developed at vesicularities of 65% to 83%. Bubble size distributions follow power–law relations at vesicularities of 1% to 65%, and bubble size distributions evolve from power–law relations to exponential relations at vesicularities of 65% to 83%. This evolution is associated with the change from far-from-equilibrium degassing to near-equilibrium degassing. During far-from-equilibrium degassing, multiple nucleation events are pronounced, and possibly account for the generation of power–law relations. When the system reaches near-equilibrium degassing, coalescence is dominant and leads to the formation of bubbles of similar size. Therefore, bubble size distributions are described by exponential relations.
    Description: NSERC
    Description: Published
    Description: 533-547
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: basalt ; Stromboli ; bubble size distribution ; degassing ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The cataclysmic 18 May 1980 eruption at Mount St. Helens was preceded by intense seismic activity marking the mechanical response of the volcanic edifice to interior pressurisation. This seismicity is analysed to yield the temporal change in the seismic scaling exponent, D, inferred from the seismic b-value, that in-turn is related to the seismic moment of an earthquake. Time evolution of D preceding the eruption onset reveals: (1) a major decrease in D occurring over only a few days at the end of March; (2) a steady but stepped decrease in D (steps ~5–10 days) occurring from the end of March to early May; (3) a sharp decrease in D in early May; and (4) steady low values of D occurring 2–3 days before the eruption onset. This response is interpreted as major ruptures, formed at the end of March, arresting and participating in, but not triggering the ultimate failure of the flank. Rather, the rate of interior fracturing slowed in the 2 months preceding the 18 May 1980 major blast, and the triggering of failure is consistent with interior gas overpressurisation. The occurrence of two swarms of low frequency seismic events and the high values of the harmonic tremor indicate the action of interior pressurisation on a cycle of 20–25 days. Solutions are applied to represent the harmonic interior pressurisation of the edifice by gas exsolving from the volcano core. The transient radial migration of overpressured gas may reduce the apparent strength of the edifice, and ultimately trigger failure of the flank. Importantly, this mechanism is capable of triggering flank failure both after multiple core pressurisation cycles have been sustained, and as core pressures are low and diminishing—and may be a minimum. These twin attributes are both apparent in the seismic record for Mount St. Helens, used as a proxy for the unrecorded timing and magnitude of gas pressurisation at the volcano core.
    Description: Published
    Description: 155-168
    Description: partially_open
    Keywords: seismicity ; scaling exponents ; haronic inflation ; pressurisation mechanics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 497 bytes
    Format: 338420 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Diffusion of halogens has the potential to influence petrogenetic processes in magma chambers and conduit degassing processes. This contribution reviews our current state of knowledge concerning halogen diffusion and the influence of halogens on the diffusion of major elements in silicate melts. The addition of halogens to silicate melts at common, natural concentration levels will have little effect on the diffusion of major elements. However, the differences between the diffusivity of water, the diffusivities of halogens, and the diffusivity of sulfur are significant enough that during melt inclusion entrapment, or during rapid bubble or crystal growth, diffusive fractionation betweenwater and the halogens, and between halogens and sulfur, are expected to occur and can influence the compositions of melt inclusions, crystals and volcanic gases.
    Description: NSERC Discovery grant to D.R.B
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Halogens ; Diffusion ; Magmatic processes ; Volcanic gas ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Fluorine and chlorine diffusion were measured in two natural phonolitic melts, from Vesuvius (Italy) and from Laacher See (Germany), at 0.5 and 1.0 GPa, between 1250 and 1450 °C at anhydrous conditions and with about 2 and 5 wt.% of dissolvedwater. The two different startingmaterials allowus to investigate the alkali effect,Na vs. K, on halogen diffusion.One compositionwas a K-rich (~10wt.%) phonoliticmelt corresponding to thewhite pumice phase of the 79ADeruption of Vesuvius, and the other aNa-rich (~10 wt.%) phonoliticmelt corresponding tomost differentiated melt of the 12,000 BC eruption of Laacher See. The diffusion-couple technique in a piston cylinder was used for the experiments. Experiments were performed with only one halogen diffusing and with the simultaneous diffusion of a halogenmixture (F, Cl, Br) in order to evaluate the interactions between the halogens during diffusion. Diffusion coefficients for F range between 2×10−11m2/s at 1250 °C and 7×10−11m2/s at 1450 °C for the Na-rich melt and between 1×10−11 m2/s at 1250 °C and 8×10−11 m2/s at 1450 °C for the K-rich melt at anhydrous conditions. Diffusion coefficients for Cl range between 2×10−12 m2/s at 1250 °C and 1×10−11 m2/s at 1450 °C for theNa-richmelt and between 7×10−12m2/s at 1250 °C and 2×10−11m2/s at 1450 °C for the K-richmelt at anhydrous conditions. Fluorine diffusivity is higher than Cl in the Na-rich-phonolitic melt by one order of magnitude,whereas in the K-rich-phonoliticmelt F and Cl diffusivities are similar. The effect ofwater is significant for Cl in both Na-rich and K-rich melts: the addition of water enhances Cl diffusivity by up to one order of magnitude, butwater does not significantly affect F diffusion. F and Cl diffusivities always differ fromone another in the same phonoliticmelt composition. F diffusivities are similar in both compositions. Conversely, Cl diffusion depends upon the dominant alkali. These results evidence that halogen diffusivitymay represent a limiting factor for their degassing during rapid syneruptive decompression and vesiculation of H2O-rich-phonolitic melts. The contrasting volatile diffusivities of F and Cl in silicate melts duringmagma vesiculation may be a key, controlling factor of the composition of the vapour phase (bubbles) produced. Such diffusion controlled degassingmodelmay explain the absence of F and Cl degassing observed during the 79AD eruption of Vesuvius.
    Description: IPGP contribution: 2364; Geotop contribution: 2008-0029.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Diffusio ; Halogenes ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-08
    Description: Products of magma fragmentation can pose a severe threat to health, infrastructure, environment, and aviation. Systematic evaluation of the mechanisms and the consequences of volcanic fragmentation is very difficult as the adjacent processes cannot be observed directly and their deposits undergo transport-related sorting. However, enhanced knowledge is required for hazard assessment and risk mitigation. Laboratory experiments on natural samples allow the precise characterization of the generated pyroclasts and open the possibility for substantial advances in the quantification of fragmentation processes. They hold the promise of precise characterization and quantification of fragmentation efficiency and its dependence on changing material properties and the physical conditions at fragmentation. We performed a series of rapid decompression experiments on three sets of natural samples from Unzen volcano, Japan. The analysis comprised grain-size analysis and surface area measurements. The grain-size analysis is performed by dry sieving for particles larger than 250 Am and wet laser refraction for smaller particles. For all three sets of samples, the grain-size of the most abundant fraction decreases and the weight fraction of newly generated ash particles (up to 40 wt.%) increases with experimental pressure/potential energy for fragmentation. This energy can be estimated from the volume of the gas fraction and the applied pressure. The surface area was determined through Argon adsorption. The fragmentation efficiency is described by the degree of fineparticle generation. Results show that the fragmentation efficiency and the generated surface correlate positively with the applied energy.
    Description: Published
    Description: 125-135
    Description: partially_open
    Keywords: experimental volcanology ; fragmentation efficiency ; particle analysis ; ash ; magma ; porosity ; Unzen volcano ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 504138 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-08
    Description: In response to rapid decompression, porous magma may fragment explosively. This occurs when the melt can no longer withstand forces exerted upon it due to the overpressure in included bubbles. This occurs at a critical pressure difference between the bubbles and the surrounding magma. In this study we have investigated this pressure threshold necessary for the fragmentation of magma. Here we present the first comprehensive, high temperature experimental quantification of the fragmentation threshold of volcanic rocks varying widely in porosity, permeability, crystallinity, and chemical composition. We exposed samples to increasing pressure differentials in a high temperature shock tube apparatus until fragmentation was initiated. Experimentally, we define the fragmentation threshold as the minimum pressure differential that leads to complete fragmentation of the pressurized porous rock sample. Our results show that the fragmentation threshold is strongly dependent on porosity; high porosity samples fragment at lower pressure differentials than low porosity samples. The fragmentation threshold is inversely proportional to the porosity. Of the other factors, permeability likely affects the fragmentation threshold at high porosity values, whereas chemical composition, crystallinity and bubble size distribution appear to have minor effects. The relationship for fragmentation threshold presented here can be used to predict the minimum pressure differential necessary for the initiation or cessation of the explosive fragmentation of porous magma.
    Description: Published
    Description: 139-148
    Description: partially_open
    Keywords: fragmentation ; threshold ; experimental ; volcanology ; magma ; eruption ; porosity ; decompression ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 411365 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...