ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Communications and Radar  (3)
  • Lunar and Planetary Science and Exploration  (2)
  • *Phagocytosis  (1)
  • 2005-2009  (6)
  • 1990-1994
Collection
Years
Year
  • 1
    Publication Date: 2008-04-25
    Description: The cellular machinery promoting phagocytosis of corpses of apoptotic cells is well conserved from worms to mammals. An important component is the Caenorhabditis elegans engulfment receptor CED-1 (ref. 1) and its Drosophila orthologue, Draper. The CED-1/Draper signalling pathway is also essential for the phagocytosis of other types of 'modified self' including necrotic cells, developmentally pruned axons and dendrites, and axons undergoing Wallerian degeneration. Here we show that Drosophila Shark, a non-receptor tyrosine kinase similar to mammalian Syk and Zap-70, binds Draper through an immunoreceptor tyrosine-based activation motif (ITAM) in the Draper intracellular domain. We show that Shark activity is essential for Draper-mediated signalling events in vivo, including the recruitment of glial membranes to severed axons and the phagocytosis of axonal debris and neuronal cell corpses by glia. We also show that the Src family kinase (SFK) Src42A can markedly increase Draper phosphorylation and is essential for glial phagocytic activity. We propose that ligand-dependent Draper receptor activation initiates the Src42A-dependent tyrosine phosphorylation of Draper, the association of Shark and the activation of the Draper pathway. These Draper-Src42A-Shark interactions are strikingly similar to mammalian immunoreceptor-SFK-Syk signalling events in mammalian myeloid and lymphoid cells. Thus, Draper seems to be an ancient immunoreceptor with an extracellular domain tuned to modified self, and an intracellular domain promoting phagocytosis through an ITAM-domain-SFK-Syk-mediated signalling cascade.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493287/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493287/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ziegenfuss, Jennifer S -- Biswas, Romi -- Avery, Michelle A -- Hong, Kyoungja -- Sheehan, Amy E -- Yeung, Yee-Guide -- Stanley, E Richard -- Freeman, Marc R -- 1R01CA26504/CA/NCI NIH HHS/ -- 1R01GM55293/GM/NIGMS NIH HHS/ -- 1R01NS053538/NS/NINDS NIH HHS/ -- R37 CA026504/CA/NCI NIH HHS/ -- R37 CA026504-30/CA/NCI NIH HHS/ -- England -- Nature. 2008 Jun 12;453(7197):935-9. doi: 10.1038/nature06901. Epub 2008 Apr 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605-2324, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432193" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Axons/metabolism/pathology ; Cell Line ; Cell Membrane/metabolism ; Central Nervous System ; Drosophila Proteins/chemistry/*metabolism ; Intracellular Signaling Peptides and Proteins/*metabolism ; Membrane Proteins/chemistry/*metabolism ; Neuroglia/*cytology ; *Phagocytosis ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins pp60(c-src)/*metabolism ; *Signal Transduction ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-27
    Description: Optical communications is a key technology to meet the bandwidth expansion required in the global information grid. High bandwidth bi-directional links between sub-orbital platforms and ground and space terminals can provide a seamless interconnectivity for rapid return of critical data to analysts. The JPL Optical Communications Telescope Laboratory (OCTL) is located in Wrightwood California at an altitude of 2.2.km. This 200 sq-m facility houses a state-of- the-art 1-m telescope and is used to develop operational strategies for ground-to-space laser beam propagation that include safe beam transmission through navigable air space, adaptive optics correction and multi-beam scintillation mitigation, and line of sight optical attenuation monitoring. JPL has received authorization from international satellite owners to transmit laser beams to more than twenty retro-reflecting satellites. This paper presents recent progress in the development of these operational strategies tested by narrow laser beam transmissions from the OCTL to retro-reflecting satellites. We present experimental results and compare our measurements with predicted performance for a variety of atmospheric conditions.
    Keywords: Communications and Radar
    Type: SPIE Defense and Security Symposium; 9-13 Aprl. 2007; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Optical characteristics can potentially benefit "access" links at Mars when transmitting data from surface to orbiting assets because of the higher gain and modulation bandwidth, compared to radio frequency (RF). Furthermore, higher bits/kg/W can be realized with low mass and power optical systems, enabling the streaming of high definition imagery. In this paper we present a conceptual design for a low complexity, autonomous optical communications link for returning data at 50-200 Mb/s from the Martian surface and for lower forward data rates of 50 kb/s to the surface. The pointing control is simplified by widening the transmitted laser beams (0.5 - 2.0 mrad) for the short distance (400-1200 Km) links. Link acquisition is based on the orbiter transceiver (OT) "blind"-pointing a laser beam to illuminate the lander transceiver (LT) on the surface. The LT acquires the link with a spectrally-filtered wide-field-of-view camera and subsequently tracks the orbiter transceiver with a two-axis, stepper-motor-actuator, to send back a laser modulated with high-rate data to the orbiting asset. The system design also has a provision for the OT transitioning from blind-pointing to closed loop tracking once it acquires the signal from the lander transceiver. Results from successful ground-based demonstrations performed at JPL, in which the pointing rate required to track an orbiter was emulated by mounting both transceivers on rotating stages, and in which we transmitted live video and pseudo-random data streams, are presented.
    Keywords: Communications and Radar
    Type: 2009 IEEE Aerospace Conference; Mar 07, 2009 - Mar 14, 2009; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: An optical communications terminal (OCT) is being developed to enable transmission of data at a rate as high as 2.5 Gb/s, from an aircraft or spacecraft to a ground station. In addition to transmitting high data rates, OCT will also be capable of bidirectional communications.
    Keywords: Communications and Radar
    Type: NPO-30537 , NASA Tech Briefs, October 2005; 29-30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Free-space optical communications offers expanded data return capacity, from probes distributed throughout the solar system and beyond. Space-borne and Earth-based optical transceivers used for communicating optically, will periodically encounter near Sun pointing. This will result in an increase in the scattered background light flux, often contributing to degraded link performance. The varying duration of near Sun pointing link operations relative to the location of space-probes, is discussed in this paper. The impact of near Sun pointing on link performance for a direct detection photon-counting communications system is analyzed for both ground- and space-based Earth receivers. Finally, impact of near Sun pointing on spaceborne optical transceivers is discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 04, 2006 - Mar 11, 2006; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of the missions is to grow, through a series of launches, a system of systems communication, navigation, and timing infrastructure at minimum cost while providing a network-centric infrastructure that maximizes the exploration capabilities and science return. There is a strong need to use architecting processes in the mission pre-formulation stage to describe the systems, interfaces, and interoperability needed to implement multiple space communication systems that are deployed over time, yet support interoperability with each deployment phase and with 20 years of legacy systems. In this paper we present a process for defining the architecture of the communications, navigation, and networks needed to support future space explorers with the best adaptable and evolable network-centric space exploration infrastructure. The process steps presented are: 1) Architecture decomposition, 2) Defining mission systems and their interfaces, 3) Developing the communication, navigation, networking architecture, and 4) Integrating systems, operational and technical views and viewpoints. We demonstrate the process through the architecture development of the communication network for upcoming NASA space exploration missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-16232 , International Conference on System of Systems Engineering (SoSE); Apr 16, 2007 - Apr 18, 2007; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...