ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (15)
  • American Association for the Advancement of Science (AAAS)  (8)
  • AGU  (7)
  • 2005-2009  (11)
  • 1990-1994  (1)
  • 1980-1984  (3)
  • 1
    facet.materialart.
    Unknown
    AGU
    In:  Bull., Polar Proj. OP-O3A4, Earthquake Prediction, Washington, D.C., AGU, vol. 4, no. XVI:, pp. 457-472, (ISBN: 3-540-23712-7)
    Publication Date: 1981
    Keywords: Earthquake precursor: prediction research ; Earthquake precursor: deformation or strain ; Geodesy
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-23
    Description: The NCAR Whole Atmosphere Community Climate Model, version 3 (WACCM3), is used to study the atmospheric response from the surface to the lower thermosphere to changes in solar and geomagnetic forcing over the 11-year solar cycle. WACCM3 is a general circulation model that incorporates interactive chemistry that solves for both neutral and ion species. Energy inputs include solar radiation and energetic particles, which vary significantly over the solar cycle. This paper presents a comparison of simulations for solar cycle maximum and solar cycle minimum conditions. Changes in composition and dynamical variables are clearly seen in the middle and upper atmosphere, and these in turn affect terms in the energy budget. Generally good agreement is found between the model response and that derived from satellite observations, although significant differences remain. A small but statistically significant response is predicted in tropospheric winds and temperatures which is consistent with signals observed in reanalysis data sets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU
    In:  Washington, D.C., AGU, vol. 4, no. Publ. No. 12, pp. 9, (3-540-24165-5, XXVI + 228 p.)
    Publication Date: 1981
    Keywords: Handbook of geophysics ; Earthquake precursor: prediction research ; Earthquake precursor: deformation or strain ; Seismicity ; Seismology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU
    In:  Professional Paper, Open-File Rept., Chin. Geophys., Washington, D.C., AGU, vol. 2, no. 1, pp. 157-172, (ISBN 0080419208)
    Publication Date: 1982
    Keywords: Earthquake precursor: prediction research ; China
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-23
    Description: Zero-age basalts dredged from the Kolbeinsey Ridge directly north of Iceland are mafic quartz tholeiites (MgO 6-10 wt. %), strongly depleted in incompatible elements. Fractionation-corrected Na2O contents ('Na(sub 8)') are amongst the lowest found on the global ridge system, implying that the degree of partial melting at Kolbeinsey is amongst the highest for all mid-ocean ridge basalt (MORB). In contrast, the basalts show large ranges of incompatible-element ratios (e.g., K2O/TiO2 of 0.01 to 0.12 and Nd/Sm of 2.1 to 2.9) not related to variations in radiogenic isotope ratios; this suggests recent enrichment/depletion events associated with small-degree partial melting as their cause, rather than long-lived source heterogeneity. Tholeiitic MORB from many regions globally show similar or more extreme variations in K2O/TiO2. Dynamic melting of an adiabatically upwelling source can reconcile these conflicting indications of the degree of melting. Through dynamic melting, the incompatible elements are partially separated into different melt fractions based on their bulk partition coefficients, more incompatible elements being concentrated in deeper, smaller-degree partial melts. The final erupted magma is a mix of melts from all depths in the melting column. The concentration of highly incompatible elements in the mix will be very sensitive to the physical processes allowing the deep melts to separate and migrate to the site of mixing, and small fluctuations in the efficiency of the separation process can account for the large range of trace element ratios seen at Kolbeinsey. The major element chemistry of the erupted mix (and Na(sub 8) is much more robust, depending mainly on the integrated total amount of melting. The large variations of incompatible element ratios seen at Kolbeinsey, and in MORB in general, therefore give no information about the total degree of melting occuring beneath the ridge, nor do they require a heterogeneous source.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-08
    Description: The Atlantic meridional overturning circulation (MOC), which provides one-quarter of the global meridional heat transport, is composed of a number of separate flow components. How changes in the strength of each of those components may affect that of the others has been unclear because of a lack of adequate data. We continuously observed the MOC at 26.5°N for 1 year using end-point measurements of density, bottom pressure, and ocean currents; cable measurements across the Straits of Florida; and wind stress. The different transport components largely compensate for each other, thus confirming the validity of our monitoring approach. The MOC varied over the period of observation by ±5.7 × 106 cubic meters per second, with density-inferred and wind-driven transports contributing equally to it. We find evidence for depth-independent compensation for the wind-driven surface flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-23
    Description: Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models' performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-24
    Description: The 11-year solar cycles in ozone and temperature are examined using new simulations of coupled chemistry climate models. The results show a secondary maximum in stratospheric tropical ozone, in agreement with satellite observations and in contrast with most previously published simulations. The mean model response varies by up to about 2.5% in ozone and 0.8 K in temperature during a typical solar cycle, at the lower end of the observed ranges of peak responses. Neither the upper atmospheric effects of energetic particles nor the presence of the quasi biennial oscillation is necessary to simulate the lower stratospheric response in the observed low latitude ozone concentration. Comparisons are also made between model simulations and observed total column ozone. As in previous studies, the model simulations agree well with observations. For those models which cover the full temporal range 1960–2005, the ozone solar signal below 50 hPa changes substantially from the first two solar cycles to the last two solar cycles. Further investigation suggests that this difference is due to an aliasing between the sea surface temperatures and the solar cycle during the first part of the period. The relationship between these results and the overall structure in the tropical solar ozone response is discussed. Further understanding of solar processes requires improvement in the observations of the vertically varying and column integrated ozone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...