ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Apoptosis  (1)
  • *Calcification, Physiologic  (1)
  • American Association for the Advancement of Science (AAAS)  (2)
  • 2005-2009  (2)
  • 1990-1994
  • 1980-1984
  • 1965-1969
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
Years
  • 2005-2009  (2)
  • 1990-1994
  • 1980-1984
  • 1965-1969
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-06-02
    Description: The first appearances of aragonite and calcite skeletons in 18 animal clades that independently evolved mineralization during the late Ediacaran through the Ordovician (approximately 550 to 444 million years ago) correspond to intervals when seawater chemistry favored aragonite and calcite precipitation, respectively. Skeletal mineralogies rarely changed once skeletons evolved, despite subsequent changes in seawater chemistry. Thus, the selection of carbonate skeletal minerals appears to have been dictated by seawater chemistry at the time a clade first acquired its mineralized skeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porter, Susannah M -- New York, N.Y. -- Science. 2007 Jun 1;316(5829):1302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA 93106, USA. porter@geol.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17540895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Calcification, Physiologic ; Calcium/analysis ; Calcium Carbonate/*analysis ; Chemical Precipitation ; Crystallization ; *Fossils ; Invertebrates/*chemistry ; Magnesium/analysis ; Seawater/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-02-14
    Description: The current model of apoptosis holds that upstream signals lead to activation of downstream effector caspases. We generated mice deficient in the two effectors, caspase 3 and caspase 7, which died immediately after birth with defects in cardiac development. Fibroblasts lacking both enzymes were highly resistant to both mitochondrial and death receptor-mediated apoptosis, displayed preservation of mitochondrial membrane potential, and had defective nuclear translocation of apoptosis-inducing factor (AIF). Furthermore, the early apoptotic events of Bax translocation and cytochrome c release were also delayed. We conclude that caspases 3 and 7 are critical mediators of mitochondrial events of apoptosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lakhani, Saquib A -- Masud, Ali -- Kuida, Keisuke -- Porter, George A Jr -- Booth, Carmen J -- Mehal, Wajahat Z -- Inayat, Irteza -- Flavell, Richard A -- 1 K08 HD044580/HD/NICHD NIH HHS/ -- 5 K12 HD01401/HD/NICHD NIH HHS/ -- K08 DK002965/DK/NIDDK NIH HHS/ -- K08 DK002965-04/DK/NIDDK NIH HHS/ -- K12 HD00850/HD/NICHD NIH HHS/ -- NIDDK P30-34989/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 10;311(5762):847-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16469926" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Inducing Factor/metabolism ; Caspase 3 ; Caspase 7 ; Caspases/deficiency/*metabolism ; Cell Nucleus/metabolism ; Cell Shape ; Cell Survival ; Cells, Cultured ; Cytochromes c/metabolism ; DNA Fragmentation ; Female ; Fibroblasts/cytology ; Heart/embryology ; Heart Defects, Congenital/etiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria/metabolism/*physiology ; Mitochondrial Membranes/physiology ; Permeability ; T-Lymphocytes/cytology ; bcl-2-Associated X Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...