ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (9)
  • American Association for the Advancement of Science (AAAS)  (9)
  • American Physical Society
  • 2005-2009  (4)
  • 2000-2004  (5)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2003-11-01
    Description: Mutations in MeCP2, which encodes a protein that has been proposed to function as a global transcriptional repressor, are the cause of Rett syndrome (RT T), an X-linked progressive neurological disorder. Although the selective inactivation of MeCP2 in neurons is sufficient to confer a Rett-like phenotype in mice, the specific functions of MeCP2 in postmitotic neurons are not known. We find that MeCP2 binds selectively to BDNF promoter III and functions to repress expression of the BDNF gene. Membrane depolarization triggers the calcium-dependent phosphorylation and release of MeCP2 from BDNF promoter III, thereby facilitating transcription. These studies indicate that MeCP2 plays a key role in the control of neuronal activity-dependent gene regulation and suggest that the deregulation of this process may underlie the pathology of RT T.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wen G -- Chang, Qiang -- Lin, Yingxi -- Meissner, Alexander -- West, Anne E -- Griffith, Eric C -- Jaenisch, Rudolf -- Greenberg, Michael E -- HD 18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):885-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/*genetics ; Calcium/*metabolism ; Cell Membrane/physiology ; Cells, Cultured ; *Chromosomal Proteins, Non-Histone ; Cloning, Molecular ; CpG Islands ; DNA Methylation ; DNA-Binding Proteins/*metabolism ; Electrophoretic Mobility Shift Assay ; *Gene Expression Regulation ; Gene Silencing ; Histones/metabolism ; Methyl-CpG-Binding Protein 2 ; Methylation ; Mice ; Mice, Knockout ; Neurons/metabolism/physiology ; Phosphorylation ; Potassium Chloride/pharmacology ; Precipitin Tests ; Promoter Regions, Genetic ; Rats ; *Repressor Proteins ; Rett Syndrome/genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-09-07
    Description: The Golgi-localized, gamma-ear-containing, adenosine diphosphate ribosylation factor-binding proteins (GGAs) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) in the Golgi and have an essential role in lysosomal enzyme sorting. Here the GGAs and the coat protein adaptor protein-1 (AP-1) were shown to colocalize in clathrin-coated buds of the trans-Golgi networks of mouse L cells and human HeLa cells. Binding studies revealed a direct interaction between the hinge domains of the GGAs and the gamma-ear domain of AP-1. Further, AP-1 contained bound casein kinase-2 that phosphorylated GGA1 and GGA3, thereby causing autoinhibition. This could induce the directed transfer of the MPRs from GGAs to AP-1. MPRs that are defective in binding to GGAs are poorly incorporated into AP-1-containing clathrin-coated vesicles. Thus, the GGAs and AP-1 interact to package MPRs into AP-1-containing coated vesicles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doray, Balraj -- Ghosh, Pradipta -- Griffith, Janice -- Geuze, Hans J -- Kornfeld, Stuart -- R01 CA-08759/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 6;297(5587):1700-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12215646" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/*metabolism ; Adaptor Proteins, Vesicular Transport ; Animals ; Biological Transport ; Carrier Proteins/*metabolism ; Cattle ; Cell Line ; Clathrin-Coated Vesicles/metabolism ; HeLa Cells ; Humans ; L Cells (Cell Line) ; Membrane Proteins/*metabolism ; Mice ; Mutation ; Phosphorylation ; Protein Binding ; Receptor, IGF Type 2/genetics/*metabolism ; Recombinant Proteins/metabolism ; trans-Golgi Network/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-02-09
    Description: Tissue engineering can be used to restore, maintain, or enhance tissues and organs. The potential impact of this field, however, is far broader-in the future, engineered tissues could reduce the need for organ replacement, and could greatly accelerate the development of new drugs that may cure patients, eliminating the need for organ transplants altogether.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffith, Linda G -- Naughton, Gail -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1009-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Division of Bioengineering and Environmental Health, and Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. griff@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocompatible Materials ; Bioreactors ; Blood Vessels/physiology ; Cell Culture Techniques ; Cell Differentiation ; Culture Techniques ; Embryo, Mammalian/cytology ; Humans ; Models, Biological ; Neovascularization, Physiologic ; Skin Transplantation ; Stem Cells/physiology ; *Tissue Engineering/instrumentation/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-02-18
    Description: In the mammalian nervous system, neuronal activity regulates the strength and number of synapses formed. The genetic program that coordinates this process is poorly understood. We show that myocyte enhancer factor 2 (MEF2) transcription factors suppressed excitatory synapse number in a neuronal activity- and calcineurin-dependent manner as hippocampal neurons formed synapses. In response to increased neuronal activity, calcium influx into neurons induced the activation of the calcium/calmodulin-regulated phosphatase calcineurin, which dephosphorylated and activated MEF2. When activated, MEF2 promoted the transcription of a set of genes, including arc and synGAP, that restrict synapse number. These findings define an activity-dependent transcriptional program that may control synapse number during development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flavell, Steven W -- Cowan, Christopher W -- Kim, Tae-Kyung -- Greer, Paul L -- Lin, Yingxi -- Paradis, Suzanne -- Griffith, Eric C -- Hu, Linda S -- Chen, Chinfei -- Greenberg, Michael E -- AG05870/AG/NIA NIH HHS/ -- HD18655/HD/NICHD NIH HHS/ -- NS28829/NS/NINDS NIH HHS/ -- R01 EY013613/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 17;311(5763):1008-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Program, Children's Hospital, and Departments of Neurology and Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16484497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; Calcium/metabolism ; Cells, Cultured ; Cytoskeletal Proteins/genetics ; Dendrites/physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; GTPase-Activating Proteins/genetics ; Gene Expression Regulation ; Glutamic Acid/metabolism ; Hippocampus/cytology/*physiology ; MEF2 Transcription Factors ; Mutation ; Myogenic Regulatory Factors/genetics/*physiology ; Nerve Tissue Proteins/genetics ; Neurons/*physiology ; Oligonucleotide Array Sequence Analysis ; Phosphorylation ; RNA Interference ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Synapses/*physiology ; Synaptic Transmission ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-12-17
    Description: Multiple lines of evidence have shown that the isotopic composition and concentration of calcium in seawater have changed over the past 28 million years. A high-resolution, continuous seawater calcium isotope ratio curve from marine (pelagic) barite reveals distinct features in the evolution of the seawater calcium isotopic ratio suggesting changes in seawater calcium concentrations. The most pronounced increase in the delta44/40Ca value of seawater (of 0.3 per mil) occurred over roughly 4 million years following a period of low values around 13 million years ago. The major change in marine calcium corresponds to a climatic transition and global change in the carbon cycle and suggests a reorganization of the global biogeochemical system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffith, Elizabeth M -- Paytan, Adina -- Caldeira, Ken -- Bullen, Thomas D -- Thomas, Ellen -- New York, N.Y. -- Science. 2008 Dec 12;322(5908):1671-4. doi: 10.1126/science.1163614.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological and Environmental Sciences, Stanford University, Building 320, Room 118, Stanford, CA 94305, USA. egriffith@ucsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19074345" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Barium Sulfate/chemistry ; Calcium/*analysis/metabolism ; Calcium Carbonate/analysis ; Calcium Isotopes/analysis ; Climate ; Geologic Sediments/chemistry ; Seawater/*chemistry ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-05-06
    Description: We sequenced the 29,751-base genome of the severe acute respiratory syndrome (SARS)-associated coronavirus known as the Tor2 isolate. The genome sequence reveals that this coronavirus is only moderately related to other known coronaviruses, including two human coronaviruses, HCoV-OC43 and HCoV-229E. Phylogenetic analysis of the predicted viral proteins indicates that the virus does not closely resemble any of the three previously known groups of coronaviruses. The genome sequence will aid in the diagnosis of SARS virus infection in humans and potential animal hosts (using polymerase chain reaction and immunological tests), in the development of antivirals (including neutralizing antibodies), and in the identification of putative epitopes for vaccine development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marra, Marco A -- Jones, Steven J M -- Astell, Caroline R -- Holt, Robert A -- Brooks-Wilson, Angela -- Butterfield, Yaron S N -- Khattra, Jaswinder -- Asano, Jennifer K -- Barber, Sarah A -- Chan, Susanna Y -- Cloutier, Alison -- Coughlin, Shaun M -- Freeman, Doug -- Girn, Noreen -- Griffith, Obi L -- Leach, Stephen R -- Mayo, Michael -- McDonald, Helen -- Montgomery, Stephen B -- Pandoh, Pawan K -- Petrescu, Anca S -- Robertson, A Gordon -- Schein, Jacqueline E -- Siddiqui, Asim -- Smailus, Duane E -- Stott, Jeff M -- Yang, George S -- Plummer, Francis -- Andonov, Anton -- Artsob, Harvey -- Bastien, Nathalie -- Bernard, Kathy -- Booth, Timothy F -- Bowness, Donnie -- Czub, Martin -- Drebot, Michael -- Fernando, Lisa -- Flick, Ramon -- Garbutt, Michael -- Gray, Michael -- Grolla, Allen -- Jones, Steven -- Feldmann, Heinz -- Meyers, Adrienne -- Kabani, Amin -- Li, Yan -- Normand, Susan -- Stroher, Ute -- Tipples, Graham A -- Tyler, Shaun -- Vogrig, Robert -- Ward, Diane -- Watson, Brynn -- Brunham, Robert C -- Krajden, Mel -- Petric, Martin -- Skowronski, Danuta M -- Upton, Chris -- Roper, Rachel L -- New York, N.Y. -- Science. 2003 May 30;300(5624):1399-404. Epub 2003 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉British Columbia Cancer Agency (BCCA) Genome Sciences Centre, 600 West 10th Avenue, Vancouver, British Columbia V5Z 4E6, Canada. mmarra@bccgsc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730501" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; 5' Untranslated Regions ; Animals ; Base Sequence ; Conserved Sequence ; Coronavirus/classification/genetics ; DNA, Complementary ; Frameshifting, Ribosomal ; *Genome, Viral ; Humans ; Membrane Glycoproteins/chemistry/genetics ; Nucleocapsid Proteins/chemistry/genetics ; Open Reading Frames ; Phylogeny ; RNA Replicase/chemistry/genetics ; RNA, Viral/*genetics/isolation & purification ; Regulatory Sequences, Nucleic Acid ; SARS Virus/classification/*genetics/isolation & purification ; Sequence Analysis, DNA ; Severe Acute Respiratory Syndrome/virology ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins/chemistry/genetics ; Viral Matrix Proteins/chemistry/genetics ; Viral Proteins/chemistry/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-01-11
    Description: Most gastrointestinal stromal tumors (GISTs) have activating mutations in the KIT receptor tyrosine kinase, and most patients with GISTs respond well to Gleevec, which inhibits KIT kinase activity. Here we show that approximately 35% (14 of 40) of GISTs lacking KIT mutations have intragenic activation mutations in the related receptor tyrosine kinase, platelet-derived growth factor receptor alpha (PDGFRA). Tumors expressing KIT or PDGFRA oncoproteins were indistinguishable with respect to activation of downstream signaling intermediates and cytogenetic changes associated with tumor progression. Thus, KIT and PDGFRA mutations appear to be alternative and mutually exclusive oncogenic mechanisms in GISTs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heinrich, Michael C -- Corless, Christopher L -- Duensing, Anette -- McGreevey, Laura -- Chen, Chang-Jie -- Joseph, Nora -- Singer, Samuel -- Griffith, Diana J -- Haley, Andrea -- Town, Ajia -- Demetri, George D -- Fletcher, Christopher D M -- Fletcher, Jonathan A -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):708-10. Epub 2003 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Department of Pathology, Oregon Health & Science University Cancer Institute and Portland VA Medical Center, Portland, OR 97201, USA. heinrich@ohsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522257" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Chromosome Aberrations ; Cricetinae ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Exons ; Gastrointestinal Neoplasms/*genetics/metabolism ; Humans ; Karyotyping ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Oncogenes ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-kit/*genetics/metabolism ; Receptor, Platelet-Derived Growth Factor alpha/*genetics/metabolism ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; Signal Transduction ; Trans-Activators/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-10-04
    Description: The adenosine class of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A2A adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586971/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586971/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaakola, Veli-Pekka -- Griffith, Mark T -- Hanson, Michael A -- Cherezov, Vadim -- Chien, Ellen Y T -- Lane, J Robert -- Ijzerman, Adriaan P -- Stevens, Raymond C -- GM075915/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-04/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-04/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 21;322(5905):1211-7. doi: 10.1126/science.1164772. Epub 2008 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18832607" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine A2 Receptor Antagonists ; Animals ; Binding Sites ; Crystallography, X-Ray ; Humans ; Ligands ; Protein Binding ; Protein Conformation ; Receptor, Adenosine A2A/*chemistry ; Structure-Activity Relationship ; Triazines/chemistry ; Triazoles/chemistry ; Tryptophan/chemistry ; Turkeys
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-03-21
    Description: Genetic compatibility may drive individual mate choice decisions because of predictable fitness effects associated with breeding with incompatible partners. In Gouldian finches (Erythrura gouldiae), females paired with genetically incompatible males of alternative color morphs overproduce sons, presumably to reduce investment in inviable daughters. We also observed a reduced overall investment in clutch size, egg size, and care to offspring resulting from incompatible matings. Within-female experimental pairings demonstrate that female birds have the ability to adaptively adjust the sex of their eggs and allocate resources on the basis of partner quality. Female Gouldian finches thus make cumulative strategic allocation decisions to minimize the costs of poor-quality pairings when faced with a genetically incompatible partner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pryke, Sarah R -- Griffith, Simon C -- New York, N.Y. -- Science. 2009 Mar 20;323(5921):1605-7. doi: 10.1126/science.1168928.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Brain, Behaviour, and Evolution, Macquarie University, Sydney, NSW 2109, Australia. sarah.pryke@mq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299618" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breeding ; Clutch Size ; Female ; Finches/*genetics/*physiology ; Male ; Maternal Behavior ; *Mating Preference, Animal ; *Nesting Behavior ; Oviposition ; Ovum/physiology ; Pigmentation/genetics ; *Reproduction ; Sex Characteristics ; *Sex Ratio
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...