ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (10)
  • 1
    Call number: AWI A13-19-92242
    Description / Table of Contents: Die Dynamik der Atmosphäre der Erde umfasst einen Bereich von mikrophysikalischer Turbulenz über konvektive Prozesse und Wolkenbildung bis zu planetaren Wellenmustern. Für Wettervorhersage und zur Betrachtung des Klimas über Jahrzehnte und Jahrhunderte ist diese Gegenstand der Modellierung mit numerischen Verfahren. Mit voranschreitender Entwicklung der Rechentechnik sind Neuentwicklungen der dynamischen Kerne von Klimamodellen, die mit der feiner werdenden Auflösung auch entsprechende Prozesse auflösen können, notwendig. Der dynamische Kern eines Modells besteht in der Umsetzung (Diskretisierung) der grundlegenden dynamischen Gleichungen für die Entwicklung von Masse, Energie und Impuls, so dass sie mit Computern numerisch gelöst werden können. Die vorliegende Arbeit untersucht die Eignung eines unstetigen Galerkin-Verfahrens niedriger Ordnung für atmosphärische Anwendungen. Diese Eignung für Gleichungen mit Wirkungen von externen Kräften wie Erdanziehungskraft und Corioliskraft ist aus der Theorie nicht selbstverständlich. Es werden nötige Anpassungen beschrieben, die das Verfahren stabilisieren, ohne sogenannte „slope limiter” einzusetzen. Für das unmodifizierte Verfahren wird belegt, dass es nicht geeignet ist, atmosphärische Gleichgewichte stabil darzustellen. Das entwickelte stabilisierte Modell reproduziert eine Reihe von Standard-Testfällen der atmosphärischen Dynamik mit Euler- und Flachwassergleichungen in einem weiten Bereich von räumlichen und zeitlichen Skalen. Die Lösung der thermischen Windgleichung entlang der mit den Isobaren identischen charakteristischen Kurven liefert atmosphärische Gleichgewichtszustände mit durch vorgegebenem Grundstrom einstellbarer Neigung zu(barotropen und baroklinen)Instabilitäten, die für die Entwicklung von Zyklonen wesentlich sind. Im Gegensatz zu früheren Arbeiten sind diese Zustände direkt im z-System(Höhe in Metern)definiert und müssen nicht aus Druckkoordinaten übertragen werden.Mit diesen Zuständen, sowohl als Referenzzustand, von dem lediglich die Abweichungen numerisch betrachtet werden, und insbesondere auch als Startzustand, der einer kleinen Störung unterliegt, werden verschiedene Studien der Simulation von barotroper und barokliner Instabilität durchgeführt. Hervorzuheben ist dabei die durch die Formulierung von Grundströmen mit einstellbarer Baroklinität ermöglichte simulationsgestützte Studie des Grades der baroklinen Instabilität verschiedener Wellenlängen in Abhängigkeit von statischer Stabilität und vertikalem Windgradient als Entsprechung zu Stabilitätskarten aus theoretischen Betrachtungen in der Literatu
    Type of Medium: Dissertations
    Pages: v, 160 Seiten , Illustrationen, Diagramme
    Language: German
    Note: Inhaltsverzeichnis: 1. Einleitung. - 2. Atmosphärische Gleichungssysteme. - 2.1. Zur Notation. - 2.2. Geometrie im β-Kanal. - 2.3. Gleichungen in Flussform. - 2.4. Euler-Gleichungen. - 2.4.1. Energiegleichung. - 2.4.2. Bewegungsgleichungen. - 2.4.3. Flussform des gesamten Gleichungssystems. - 2.4.4. Schallgeschwindigkeit. - 2.4.5. Druck und Energie. - 2.4.6. Energie als Erhaltungsvariable. - 2.5. Euler-Gleichungen mit Referenzfeld. - 2.6. Linearisierte Euler-Gleichungen. - 2.7. Flachwassergleichungen. - 2.8. Flachwasseräquivalente Dynamik mit Euler-Gleichungen. - 3. Unstetiges Galerkin-Verfahren. - 3.1. Räumliche Diskretisierung. - 3.1.1. Integralform und numerischer Fluss. - 3.1.2. Koeffizientendarstellung der Gleichungen. - 3.1.3. Koordinatentransformation mit Orographie. - 3.1.4. Quadratur. - 3.1.5. Basisfunktionen im Rechteckgitter. - 3.1.6. Diskretisierung von analytischen Anfangsbedingungen. - 3.2. Zeitliche Diskretisierung. - 3.2.1. Expliziter Zeitschritt. - 3.2.2. Semi-impliziter Zeitschritt. - 3.2.3. Skalierung von Einheiten. - 3.2.4. Zeitschrittbestimmung. - 3.3. Randbedingungen. - 3.3.1. Periodische Randbedingungen. - 3.3.2. Reflektive Randbedingungen. - 3.3.3. Spezifische Randbedingungen für Euler-Gleichungen. - 3.3.4. Absorptionsschicht. - 3.4. Diffusion. - 4. Atmosphärische Gleichgewichtszustände. - 4.1. Anforderungen an stationäre Zustände. - 4.1.1. Verschwindende Advektion von Masse und potentieller Temperatur. - 4.1.2. Stationäre Impulsgleichung. - 4.2. Wind ohne Corioliskraft. - 4.3. Geostrophischer Wind. - 4.4. Vorgegebener Grundstrom mit einstellbarer Baroklinität. - 4.4.1. Lösungsalgorithmus. - 4.4.2. Zulässige Windfelder und ihre Definition außerhalb des Modellgebietes. - 4.4.3. Spezialfall konstanten thermischen Windes. - 4.5. Barotroper Grundstrom als analytischer Spezialfall. - 4.6. Charakterisierung der Baroklinität. - 4.7. Geostrophischer Zustand für Flachwassergleichungen. - 5. Numerische Stabilität von Gleichgewichtszuständen und Erhaltungseigenschaften. - 5.1. Polynomiale Balancierung des DG-Verfahrens. - 5.1.1. Ausgangssituation („low0bal0“). - 5.1.2. Isotrope Reduktion des Polynomgrades der Quellterme („low1bal0“). - 5.1.3. Isotrope Polynomgradreduktion von Quelltermen sowie Projektion der Flussfunktion („low1bal1“). - 5.1.4. Volle Balancierung mit selektiver Polynomgradreduktion und Projektion der Flussfunktion („low2bal1“). - 5.2. Konvergenz. - 5.3. Langzeitstabilität und Erhaltungseigenschaften. - 6. Atmosphärische Testfälle. - 6.1. Aufsteigende warme Blase. - 6.2. Schwerewellen. - 6.3. Bergüberströmung. - 6.4. Barotrope Instabilität. - 7. Atmosphärische Instabilitäten in mittleren Breiten. - 7.1. Barotrope Instabilität mit Euler-Gleichungen in 2D und 3D. - 7.1.1. Wavelet-Spektrum. - 7.2. Barokline Instabilität in Abhängigkeit von statischer Stabilität und thermischem Wind. - 7.2.1. Einfluss der statischen Stabilität. - 7.2.2. Einfluss der vertikalen Diskretisierung. - 7.3. Entstehung zyklonaler Wirbel aus baroklin instabilem Grundstrom. - 7.3.1. Konfiguration. - 7.3.2. Entwicklung von Impulsdifferenz. - 7.3.3. Vorticity im Horizontalschnitt. - 7.3.4. Globale Charakterisierung . - 7.4. Langzeitentwicklung aus baroklinen Zuständen. - 7.4.1. Konfiguration. - 7.4.2. Entwicklung von Impulsdifferenz und Energie. - 7.4.3. Vorticity im Horizontalschnitt. - 7.4.4 Globale Charakterisierung. - 7.4.5. Wavelet-Spektrum. - 7.4.6. Zonales Mittel. - 8. Zusammenfassung und Ausblick. - A. Mathematische Aspekte. - A.1. Profilfunktionen. - A.2. Differenzen und Normen. - A.3. Wavelet-Analyse. - A.4. Darstellung aus der Diskretisierung. - A.5. Erhaltungseigenschaften mit Quadratur. - B. Details zu Euler-Gleichungen. - B.1. Vertikale Linearisierung der Euler-Gleichungen für Präkonditionierer des semi-impliziten Zeitschrittes. - B.1.1. Vertikales lineares Gleichungssystem. - B.1.2. Diskretisierung und Matrizen. - B.1.3. Implizites Gleichungssystem. - B.2. Zustände im hydrostatischen Gleichgewicht. - B.2.1. Isotherm. - B.2.2. Polytrop. - B.2.3. Isentrop. - B.2.4. Mehrfach polytrop. - B.2.5. Uniform geschichtet. - B.3. Barokliner Zustand imp-System. - C. Zusätzliche Simulationsdaten. - C.1. Stabilitätskarten zu baroklinen Langzeitsimulationen. - C.2. Wirbelentstehung nahe Oberrand. - C.3. Zusätzliche Horizontalschnitte des baroklinen Langzeitlaufes. - D. Implementierung: Programmpaket Polyflux. - E. Korrekturen zur Veröffentlichung. - Mathematische Definitionen. - Abkürzungen und Begriffe. - Literatur.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-07
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
  • 5
    Publication Date: 2014-04-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: During March 2008 photometer observations of Arctic aerosol were performed both at a Russian ice-floe drifting station (NP-35) at the central Arctic ocean (56.7e42.0 E, 85.5e84.2 N) and at Ny-Ålesund, Spitsbergen (78.9 N, 11.9 E). Next to a persistent increase of AOD over NP-35, two pronounced aerosol events have been recorded there, one originating from early season forest fires close to the city of Khabarovsk (“Arctic Smoke”), the other one showed trajectories from central Russia and resembled more the classical Arctic Haze. The latter event has also been recorded two days later over Ny-Ålesund, both in photometer and lidar. From these remote sensing instruments volume distribution functions are derived and discussed. Only subtle differences between the smoke and the haze event have been found in terms of particle microphysics. Different trajectory analysis, driven by NCEP and ECMWF have been performed and compared. For the data set presented here the meteorological field, due to sparseness of data in the central Arctic, mainly limits the precision of the air trajectories.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-17
    Description: In this work, a closure experiment for tropospheric aerosol is presented. Aerosol size distributions and single scattering albedo from remote sensing data are compared to those measured in-situ. An aerosol pollution event on 4 April 2009 was observed by ground based and airborne lidar and photometer in and around Ny-Ålesund, Spitsbergen, as well as by DMPS, nephelometer and particle soot absorption photometer at the nearby Zeppelin Mountain Research Station. The presented measurements were conducted in an area of 40 20 km around Ny-Ålesund as part of the 2009 Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP). Aerosol mainly in the accumulation mode was found in the lower troposphere, however, enhanced backscattering was observed up to the tropopause altitude. A comparison of meteorological data available at different locations reveals a stable multi-layer-structure of the lower troposphere. It is followed by the retrieval of optical and microphysical aerosol parameters. Extinction values have been derived using two different methods, and it was found that extinction (especially in the UV) derived from Raman lidar data significantly surpasses the extinction derived from photometer AOD profiles. Airborne lidar data shows volume depolarization values to be less than 2.5% between 500 m and 2.5 km altitude, hence, particles in this range can be assumed to be of spherical shape. In-situ particle number concentrations measured at the Zeppelin Mountain Research Station at 474m altitude peak at about 0.18 mmdiameter, which was also found for the microphysical inversion calculations performed at 850 m and 1500 m altitude. Number concentrations depend on the assumed extinction values, and slightly decrease with altitude as well as the effective particle diameter. A low imaginary part in the derived refractive index suggests weakly absorbing aerosols, which is confirmed by low black carbon concentrations, measured at the Zeppelin Mountain as well as on board the Polar 5 aircraft.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-17
    Description: The Arctic atmospheric boundary layer (AABL) in the central Arctic was characterized by dropsonde, lidar, ice thickness and airborne in situ measurements during the international Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP) in April 2009. We discuss AABL observations in the lowermost 500 m above (A) open water, (B) sea ice with many open/refrozen leads (C) sea ice with few leads, and (D) closed sea ice with a front modifying the AABL. Above water, the AABL had near-neutral stratification and contained a high water vapor concentration. Above sea ice, a low AABL top, low near-surface temperatures, strong surface-based temperature inversions and an increase of moisture with altitude were observed. AABL properties and particle concentrations were modified by a frontal system, allowing vertical mixing with the free atmosphere. Above areas with many leads, the potential temperature decreased with height in the lowest 50 m and was nearly constant above, up to an altitude of 100–200 m, indicating vertical mixing. The increase of the backscatter coefficient towards the surface was high. Above sea ice with few refrozen leads, the stably stratified boundary layer extended up to 200–300 m altitude. It was characterized by low specific humidity and a smaller increase of the backscatter coefficient towards the surface.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3Journal of Applied Physics, 14(21)
    Publication Date: 2017-06-15
    Description: The influence of band gap gradients on the charge collection and diode quality factor of solar cells is investigated by device simulation. A back surface band gap gradient manifested as a gradient of the conduction band is found to lead to an increased diode quality factor. Thus, the positive influence of the gradient on the fill factor is partially counterbalanced by the diode quality factor increase. The reason for the latter is the enhanced contribution of space charge region recombination. If the cell is equipped with a double gradient at front and back surfaces, the detrimental diode factor increase can be suppressed. The relevance of the findings is investigated using different carrier lifetimes and doping levels.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...