ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-12-21
    Description: Seasonal epidemics caused by influenza virus are driven by antigenic changes (drift) in viral surface glycoproteins that allow evasion from preexisting humoral immunity. Antigenic drift is a feature of not only the hemagglutinin (HA), but also of neuraminidase (NA). We have evaluated the antigenic evolution of each protein in H1N1 and H3N2 viruses used in vaccine formulations during the last 15 y by analysis of HA and NA inhibition titers and antigenic cartography. As previously shown for HA, genetic changes in NA did not always lead to an antigenic change. The noncontinuous pattern of NA drift did not correspond closely with HA drift in either subtype. Although NA drift was demonstrated using ferret sera, we show that these changes also impact recognition by NA-inhibiting antibodies in human sera. Remarkably, a single point mutation in the NA of A/Brisbane/59/2007 was primarily responsible for the lack of inhibition by polyclonal antibodies specific for earlier strains. These data underscore the importance of NA inhibition testing to define antigenic drift when there are sequence changes in NA.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-03
    Description: African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for approximately 30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target-T. brucei N-myristoyltransferase-leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917743/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917743/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frearson, Julie A -- Brand, Stephen -- McElroy, Stuart P -- Cleghorn, Laura A T -- Smid, Ondrej -- Stojanovski, Laste -- Price, Helen P -- Guther, M Lucia S -- Torrie, Leah S -- Robinson, David A -- Hallyburton, Irene -- Mpamhanga, Chidochangu P -- Brannigan, James A -- Wilkinson, Anthony J -- Hodgkinson, Michael -- Hui, Raymond -- Qiu, Wei -- Raimi, Olawale G -- van Aalten, Daan M F -- Brenk, Ruth -- Gilbert, Ian H -- Read, Kevin D -- Fairlamb, Alan H -- Ferguson, Michael A J -- Smith, Deborah F -- Wyatt, Paul G -- 077503/Wellcome Trust/United Kingdom -- 077705/Wellcome Trust/United Kingdom -- 085622/Wellcome Trust/United Kingdom -- 087590/Wellcome Trust/United Kingdom -- 1097737/Canadian Institutes of Health Research/Canada -- G0900138/Medical Research Council/United Kingdom -- G0900138(90614)/Medical Research Council/United Kingdom -- WT077503/Wellcome Trust/United Kingdom -- WT077705/Wellcome Trust/United Kingdom -- WT083481,/Wellcome Trust/United Kingdom -- WT085622/Wellcome Trust/United Kingdom -- England -- Nature. 2010 Apr 1;464(7289):728-32. doi: 10.1038/nature08893.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360736" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*antagonists & inhibitors/metabolism ; Aminopyridines/chemistry/metabolism/pharmacology/therapeutic use ; Animals ; Antiparasitic Agents/chemistry/metabolism/*pharmacology/*therapeutic use ; Enzyme Assays ; Enzyme Inhibitors/chemistry/metabolism/pharmacology/therapeutic use ; Female ; Humans ; Mice ; Molecular Structure ; Pyrazoles/chemistry/metabolism/pharmacology/therapeutic use ; Rats ; Sulfonamides/chemistry/metabolism/pharmacology/therapeutic use ; Time Factors ; Trypanosoma brucei brucei/*drug effects/*enzymology/growth & development ; Trypanosomiasis, African/*drug therapy/*parasitology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-17
    Description: As with many other viruses, the initial cell attachment of rotaviruses, which are the major causative agent of infantile gastroenteritis, is mediated by interactions with specific cellular glycans. The distally located VP8* domain of the rotavirus spike protein VP4 (ref. 5) mediates such interactions. The existing paradigm is that 'sialidase-sensitive' animal rotavirus strains bind to glycans with terminal sialic acid (Sia), whereas 'sialidase-insensitive' human rotavirus strains bind to glycans with internal Sia such as GM1 (ref. 3). Although the involvement of Sia in the animal strains is firmly supported by crystallographic studies, it is not yet known how VP8* of human rotaviruses interacts with Sia and whether their cell attachment necessarily involves sialoglycans. Here we show that VP8* of a human rotavirus strain specifically recognizes A-type histo-blood group antigen (HBGA) using a glycan array screen comprised of 511 glycans, and that virus infectivity in HT-29 cells is abrogated by anti-A-type antibodies as well as significantly enhanced in Chinese hamster ovary cells genetically modified to express the A-type HBGA, providing a novel paradigm for initial cell attachment of human rotavirus. HBGAs are genetically determined glycoconjugates present in mucosal secretions, epithelia and on red blood cells, and are recognized as susceptibility and cell attachment factors for gastric pathogens like Helicobacter pylori and noroviruses. Our crystallographic studies show that the A-type HBGA binds to the human rotavirus VP8* at the same location as the Sia in the VP8* of animal rotavirus, and suggest how subtle changes within the same structural framework allow for such receptor switching. These results raise the possibility that host susceptibility to specific human rotavirus strains and pathogenesis are influenced by genetically controlled expression of different HBGAs among the world's population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350622/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350622/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Liya -- Crawford, Sue E -- Czako, Rita -- Cortes-Penfield, Nicolas W -- Smith, David F -- Le Pendu, Jacques -- Estes, Mary K -- Prasad, B V Venkataram -- AI 080656/AI/NIAID NIH HHS/ -- AI36040/AI/NIAID NIH HHS/ -- GM62116/GM/NIGMS NIH HHS/ -- P30 DK056338/DK/NIDDK NIH HHS/ -- P30 DK56338/DK/NIDDK NIH HHS/ -- P41 GM103694/GM/NIGMS NIH HHS/ -- R01 AI080656/AI/NIAID NIH HHS/ -- U54 GM062116/GM/NIGMS NIH HHS/ -- U54 GM062116-01A1/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Apr 15;485(7397):256-9. doi: 10.1038/nature10996.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22504179" target="_blank"〉PubMed〈/a〉
    Keywords: ABO Blood-Group System/chemistry/genetics/immunology/*metabolism ; Amino Acid Sequence ; Animals ; CHO Cells ; Cricetinae ; Crystallography, X-Ray ; Erythrocytes/metabolism/virology ; Host Specificity/*physiology ; Humans ; Models, Molecular ; Molecular Sequence Data ; N-Acetylneuraminic Acid/antagonists & inhibitors/chemistry/immunology/metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Receptors, Virus/chemistry/genetics/*metabolism ; *Rotavirus/chemistry/classification/metabolism/pathogenicity ; Viral Nonstructural Proteins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2012-05-19
    Description: The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays an essential role in the biogenesis of lysosomes by delivering newly synthesized lysosomal enzymes from the trans Golgi network to the endosomal system. The CI-MPR is expressed in most eukaryotes, with Saccharomyces cerevisiae and Caenorhabditis elegans being notable exceptions. Although the repertoire of glycans recognized by the bovine receptor has been studied extensively, little is known concerning the ligand-binding properties of the CI-MPR from non-mammalian species. To assess the evolutionary conservation of the CI-MPR, surface plasmon resonance analyses using lysosomal enzymes with defined N -glycans were carried out to probe the glycan-binding specificity of the Danio rerio CI-MPR. The results demonstrate that the D. rerio CI-MPR harbors three glycan-binding sites that, like the bovine CI-MPR, map to domains 3, 5 and 9 of its 15-domain-containing extracytoplasmic region. Analyses on a phosphorylated glycan microarray further demonstrated the unique binding properties of each of the three sites and showed that, similar to the bovine CI-MPR, only domain 5 of the D. rerio CI-MPR is capable of recognizing Man-P-GlcNAc-containing glycans.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-29
    Description: Carbohydrates participate in almost every aspect of biology from protein sorting to modulating cell differentiation and cell–cell interactions. To date, the majority of data gathered on glycan expression has been obtained via analysis with either anti-glycan antibodies or lectins. A detailed understanding of the specificities of these reagents is critical to the analysis of carbohydrates in biological systems. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins (GBPs). In this study, six different glycan microarray platforms with different modes of glycan presentation were compared using five well-known lectins; concanavalin A, Helix pomatia agglutinin, Maackia amurensis lectin I, Sambucus nigra agglutinin and wheat germ agglutinin. A new method (universal threshold) was developed to facilitate systematic comparisons across distinct array platforms. The strongest binders of each lectin were identified using the universal threshold across all platforms while identification of weaker binders was influenced by platform-specific factors including presentation of determinants, array composition and self-reported thresholding methods. This work compiles a rich dataset for comparative analysis of glycan array platforms and has important implications for the implementation of microarrays in the characterization of GBPs.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-26
    Description: : GlycoPattern is Web-based bioinformatics resource to support the analysis of glycan array data for the Consortium for Functional Glycomics. This resource includes algorithms and tools to discover structural motifs, a heatmap visualization to compare multiple experiments, hierarchical clustering of Glycan Binding Proteins with respect to their binding motifs and a structural search feature on the experimental data. Availability and implementation: GlycoPattern is freely available on the Web at http://glycopattern.emory.edu with all major browsers supported. Contact: sanjay.agravat@emory.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-04
    Description: Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-05
    Description: The MIRAGE (minimum information required for a glycomics experiment) initiative was founded in Seattle, WA, in November 2011 in order to develop guidelines for reporting the qualitative and quantitative results obtained by diverse types of glycomics analyses, including the conditions and techniques that were applied to prepare the glycans for analysis and generate the primary data along with the tools and parameters that were used to process and annotate this data. These guidelines must address a broad range of issues, as glycomics data are inherently complex and are generated using diverse methods, including mass spectrometry (MS), chromatography, glycan array-binding assays, nuclear magnetic resonance (NMR) and other rapidly developing technologies. The acceptance of these guidelines by scientists conducting research on biological systems in which glycans have a significant role will facilitate the evaluation and reproduction of glycomics experiments and data that is reported in scientific journals and uploaded to glycomics databases. As a first step, MIRAGE guidelines for glycan analysis by MS have been recently published (Kolarich D, Rapp E, Struwe WB, Haslam SM, Zaia J., et al. 2013. The minimum information required for a glycomics experiment (MIRAGE) project – Improving the standards for reporting mass spectrometry-based glycoanalytic data. Mol. Cell Proteomics. 12:991–995), allowing them to be implemented and evaluated in the context of real-world glycobiology research. In this paper, we set out the historical context, organization structure and overarching objectives of the MIRAGE initiative.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-06-05
    Description: The parasitic blood fluke Schistosoma mansoni synthesizes immunogenic glycans containing the human Lewis x antigen (Le x ; Galactose-β1-4(Fucα1-3)N-acetylglucosamine-β-R, also called CD15), but the biological role(s) of this antigen in the parasites and in humans is poorly understood. To develop IgG-based monoclonal antibodies (mAbs) specific for Le x , we harvested splenocytes from S. mansoni- infected Swiss Webster mice at Week 10 postinfection, when peak IgG responses to glycan antigens occur, and generated a panel of hybridomas secreting anti-glycan IgG that recognize periodate-sensitive epitopes in soluble egg antigens of the parasites, and also recognizes a neoglycoprotein containing a pentasaccharide with the Le x sequence. One murine mAb, an IgG3 designated F8A1.1, bound to glycoproteins and glycolipids from schistosome adults and human promyelocytic leukemic HL-60 cells that express Le x antigens, as assessed by a wide variety of approaches including immunofluorescence staining, confocal microscopy, flow cytometry and western blotting, as well as overlay assays of glycolipids after thin-layer chromatography. In contrast, F8A1.1 bound weakly to cercariae, 3-h schistosomula and human Jurkat cells. We also directly compared the glycan specificity of F8A1.1 with commercially available anti-CD15 IgG1 (clone W6D3) using a defined glycan microarray. The results demonstrated that F8A1.1 recognized glycans expressing Le x epitopes in a terminal nonreducing position, whereas anti-CD15 bound to glycans with multiple repeats of Le x epitopes, but not to glycans with a single, terminal Le x epitope. Our results show that F8A1.1 recognizes terminal Le x epitopes and can be used for identification, immunolocalization, immunoprecipitation and purification of Le x -containing glycoconjugates from schistosomes and mammalian cells.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...