ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2020-10-26
    Description: We present here a new high resolution regional P-wave velocity model for the lithosphere beneath the Italian region obtained by including information on the Moho topography, and integrating results from local earthquake tomography with 30 years of CSS data, applying the method of Waldhauser (1996). For the 3D moho map, we extended the crustal model, already available for the Alps by Lippitsch et al., 2003, to the Italian peninsula, Corsica, Sardinia, and Sicily. The tomographic model is obtained by inverting 166,000 Pg and Pn arrival times large part of which have been automatically picked and consistently weighted with an advanced automatic picking system (Aldersons, 2004). The resolution of the obtained velocity model is consistently higher and the grid spacing consistently smaller than in previous tomographic works targeting the same region. We are able to image the complex geometry of this part of the subduction-collision system between the Eurasian and African plates adding important details to the overview derived by the teleseismic tomography. Our results clearly show the plate boundary at Moho level from the Alps to the Southern Apennines and the Calabrian Arc in a volume unresolved in previous studies. The use of global 1D velocity models based on the flat Earth assumption is a pre-requisite to refine and interpret images and seismic responses of the earth obtained with geophysical studies (P and S tomography, surface wave tomography etc). Our model is suitable as a good starting point for a 3D velocity reference model of the crust and upper mantle beneath the Mediterranean area to be extended to the Adriatic Sea and to the Ionian Sea, with benefit for earthquakes location,teleseismic tomography, focal mechanisms and CMT
    Description: Published
    Description: Vienna
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: local earthquake tomography ; velocity model ; Italian Peninsula ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-08
    Description: Il 6 aprile 2009 (3.32 locali) un terremoto di Mw 6,3 ha colpito la regione Abruzzo (Italia centrale) producendo un enorme danno alla città de L'Aquila e ai paesi limitrofi causando circa 300 morti e 60.000 senza fissa dimora. A seguito di questo evento sismico, la struttura di Pronto Intervento dell’INGV (Istituto Nazionale di Geofisica e Vulcanologia), si è rapidamente attivata installando in area epicentrale due reti sismiche temporanee (Re.Mo.Tel. in real-time e Re.Mo. in stand-alone) ed il Centro Operativo Emergenza Sismica. In questo lavoro presentiamo come si e’ svolta la campagna sismica della Re.Mo., avente l’obiettivo di acquisire dati di alta qualità e dettaglio per studiare le sorgenti sismiche, l’evoluzione spazio temporale della sequenza e caratterizzare attraverso la microsismicita’ le strutture di faglia attivate ed le proprieta’ del mezzo circostante. Saranno descritte nel dettaglio l’installazione compiuta a poche ore dal mainshock, il suo sviluppo legato all’evoluzione della sequenza sismica, fino alla sua dismissione nel Marzo 2010.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: open
    Keywords: Instruments and techniques ; Seismic monitoring ; Emergency ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In the current work we present a large collection of shear wave splitting measurements in the Calabrian Arc-Tyrrhenian basin subduction system. For our analysis we used earthquakes recorded from 2003 to 2005 at the CAT/SCAN temporary network and at the INGV national network. The dataset consists of SKS teleseismic phases (earthquakes with delta 87° - 112° and magnitude greater than 6.0) and of local S phases (events deeper than 150 km). We used the method of Silver and Chan to obtain the splitting parameters: fast direction (φ) and delay time (δt). Shear wave splitting results reveal the presence of a strong seismic anisotropy with a complex pattern of fast directions in the subduction system below the region. The SKS fast polarization directions define three anisotropic domains which correspond to the three different geological and geodynamic regions: the Calabrian Arc domain with fast directions oriented NNE-SSW;the Southern Apennines domain with fast directions oriented NNW-SSE and the Apulian Platform domain with fast directions oriented almost N-S in the northern part and ENE-WSW in the southern. The large number of splitting parameters evaluated for events coming from different back-azimuth allow us to hypothesize the presence of a depth dependence anisotropic structure in each of the identified domains and to constrain at 50 km depth the upper limit of the anisotropic layer. We interpret the trench-parallel φ observed in Calabrian Arc and in Southern Apennines as a mantle flow below the slab, likely due to the pressure induced by the retrograde motion of the slab itself. The pattern of trench perpendicular φ in the Apulian Platform seems to be not a direct result of the roll-back motion of the slab and may be explained as frozen-in lithospheric anisotropy or as asthenospheric flow deflected by the complicated structure of the Adriatic microplate. Results obtained with S phases show an extremely complex pattern of fast directions and delay times. These last measures are mainly located in the south-eastern sector of the Tyrrhenian Sea in correspondence of the high velocity body imaged at 150 km depth by the tomography. We related this strong fast directions variability inside the slab to the complex structure of the slab itself. The variable pattern of SKS and S splitting measurements suggest the presence of a local scale mantle flow strongly controlled by the geometry and motion of the anisotropic slab.
    Description: Published
    Description: Montpellier, France
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: Seismic anisotropy ; SKS shear wave splitting ; subduction zones ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-03
    Description: The Southern Tyrrhenian subduction system shows a complex interaction among asthenospheric flow, subducting slab and overriding plate. To shed light on the deformations and mechanical properties of the slab and surrounding mantle, we investigated the attenuation and the anisotropic structure through the subduction region. The 3D attenuation results show high-attenuation shallow regions corresponding to the crustal layers, while the slab is imaged as a low-attenuation body bounded by high-attenuation regions located beneath the Aeolian magmatic arc. Between 100-200 km depth, in correspondence of high concentration of earthquakes, the slab is characterized by a spot of high attenuation. Such a feature could be related to the dehydration processes associated to the slab metamorphism. A high-attenuation anomaly is present in the mantle wedge beneath the Aeolian volcanic arc and could indicate mantle melting and slab dehydration and also to the large-scale serpentinization. We also investigated the anisotropic structure of the subduction zone by analyzing shear-wave splitting of the slab earthquakes. Seismic anisotropy reveals a complex pattern of anisotropy across the subduction zone. S-rays sample mainly the slab, showing variable fast directions and delay times. Comparison of S splitting measurements to P-wave velocity anomaly at 100-200 km depth shows that where the rays primarily sample the slab the delay times are small. In contrast, where S rays sample the mantle wedge, the delay times are quite high. This across-subduction variation of delay time depicts the slab as a weakly anisotropic region relative to the mantle above and below and suggests that the main source of anisotropy in the subduction zone is the deformation of the mantle above and below the slab induced by the retrograde motion of the slab.
    Description: Unpublished
    Description: Torino
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: subduction zone process ; mantle flow ; slab and mantle wedge anisotropy ; attenuation tomography ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-03
    Description: In the years 2003 -2006 several broad band stations were installed in Southern Italy: 15 permanent ones (CESIS project), improved the INGV Italian national network and 40 temporary ones were installed in the frame of CAT/SCAN NSF project.We present shear wave splitting measurements obtained analyzing SKS phases and local S phases from slab earthquakes. We used the method of Silver & Chan to obtain shear wave splitting parameters: fast direction and delay time. Shear wave splitting measurements reveals strong seismic anisotropy in the mantle beneath Southern Tyrrhenian subduction system. The SKS splitting results show fast polarization directions varying from NNW-SSE in the Southern Apennines to N-S and to E-SW in Calabria, following the strike of the mountain chain. Moving toward the Adriatic sea the fast directions rotate from N-S to NE-SW. Fast directions could indicate the mantle flow below the slab, due to its retrograde motion but also the lithospheric fabric of the subducting plate. In the Tyrrhenian domain, above the slab, from Sardinia to the Italian and Sicilian coasts the dominant fast direction is E-W and could be related to the opening of the Tyrrhenian basin and to the corner flow in the asthenospheric wedge. In Sicily fast directions depict a ring around the slab edge supporting the existence of a slab tear and of a return flow from the back to the front of the slab. Measurements obtained with intermediate and deep earthquakes slab S phases show an extremely complex pattern of fast directions. They are mostly distributed in front of the Tyrrhenian Calabrian coast in correspondence of the fast velocity anomaly imaged at 150 km depth by tomography. We can relate this fast directions variability to the complex structure of the slab itself. The complex pattern of SKS and S splitting measurements suggests the presence of local scale mantle flow controled by the motion of an anisotropic slab.
    Description: Published
    Description: Vienna
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: subduction zone process ; shear wave splitting ; deep seismicity ; Tyrrhenian Sea ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-03
    Description: Subduction zones represent a tectonic region where intense deformations and complex dynamic processes are expected. Although several progress have been made in understanding the structure and the geodynamic evolution of the subduction zones, the active interaction among the subducting slab and the surrounding mantle material remains still debated. The Southern Italy Subduction System is part of the complex tectonic boundary between the Africa-Eurasia macroplates and has been inherited from several phases of fragmentation of the Western Mediterranean subduction zone. It is widely accept that the geodynamic setting of the Southern Italy Subduction System results from the southeast retrograde motion of the northwestward subducting Western Mediterranean slab (i.e. Gueguen et al., 1998; Carminati et al., 1998; Faccenna et al., 2005 and refrences therein). The retrograde motion of the slab was responsible for the creation of the backarc extensional Tyrrhenian Sea and the building of the Southern Apennines and Calabrian arcuate orogenic belts. At present, only the portion of subduction beneath the Calabrian Arc, in the Ionian area, may be active, while a young slab window develops at the Southern Apennines (Lucente et al., 2006). The purpose of this study is to characterize the seismic structure beneath the Southern Italy in order to better define the geometry of the Ionian slab and of the surrounding mantle flows. We therefore analyzed the anisotropic and attenuation properties beneath the study region. Seismic anisotropy is found to be a ubiquitous properties of the Earth due to the mantle deformation and, thus, it is represent a powerful tool to constrain the anisotropic behavior of the upper mantle and of the subducting plate. In particular, the observed anisotropy can help to understand the mantle and the slab deformation and the dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab and in the mantle below the slab. In this study we present a large collection of shear wave splitting measurements in the Calabrian Arc - Tyrrhenian basin Subduction System. The data analyzed consist of several teleseisms and subduction zone local deep earthquakes (Baccheschi et al., 2007, 2008). We used the method described by Silver and Chan (1991), assuming that shear waves pass through a medium with homogeneous anisotropy and with an horizontal fast axis. We analyzed SKS phases from earthquakes with magnitude greater than 6.0 and epicentral distance Æ° ranging from 87° to 112°. In addition, to obtain the best signal to noise ratio, all teleseisms are band-pass filtered between 0.03-0.3 Hz. The pattern of SKS fast directions, with delay times up to 3.0 s, reveals the existence of a strong seismic anisotropy in the sub-slab mantle region. We observe both trench-parallel and trench-perpendicular fast directions. Fast axes are oriented NE-SW along the Calabrian Arc, parallel to the strike of the subduction. To the N they rotate to NNW-SSE following the curvature of the slab. Fast directions are almost perpendicular to the strike of subduction in front of the slab (Aeolian Islands) and behind the slab (Straits of Messina). In the Apulian domain we observe trench-perpendicular fast directions, oriented N-S and ENEWSW. The pattern of SKS splitting measurements parallel to the strike of the slab suggests that the anisotropy is closely controlled by subduction and by the rollback motion of the slab. These two processes would be responsible for activating mantle flow below and around the slab itself. The pattern of SKS splitting in the Apulian domain seems to be not a direct results of the rollback motion of the slab and may be explained as frozen-in lithospheric anisotropy or as asthenospheric flow deflected by the structure of the Adriatic microplate. In order to obtain a detailed image of the anisotropic structure beneath the Southern Italy Subduction System we also used the direct S waves from earthquake located within the descending Ionian plate. The particular geometry of the Tyrrhenian subduction zone relative to the distribution of the land areas and, consequently, locations of the seismic stations provide an opportunity to collect unique data. In fact, the main massif Calabria is an uplifted fore-arc that lies well trenchward of the volcanic arc. In addition, the slab dips at high angle (about 70°) below Calabria and the lateral extension of the slab is limited and bounded at its edges by the Southern Apennines and Sicily.Seismic stations are distributed in Calabria, in the Southern Apennines and in Sicily and only few are in the Aeolian volcanic arc. This allows most recorded rays to travel through and along the subducted slab. This is not frequently observed worldwide since in most subduction zones, as in Japan, land corresponds to the volcanic arc and trenchward of this the forearc is submerged. This enabled us to sample rays that propagate up the slab and allowed us to separate the different sources of the anisotropy: the subducting lithosphere, the mantle wedge above it and the overriding plate. We analyzed several deep earthquakes, with depth greater tha 150 km, that occurred within the descending slab; S splitting parameters show a complex pattern of anisotropy with variable fast directions across the subduction zone and delay times ranging from 0.1 sec to 2.2 sec. Measurements at single stations are quite variable excluding the overriding plate as main source of anisotropy. The S wave splitting parameters also show frequency-dependent behaviour that we attribute to the presence of small-scale anisotropic heterogeneities. Comparison of the S splitting measurements to the Pwave velocity anomaly at 100-200 km depth shows that where the rays primarily sample the slab the delay times are small. In contrast, where the S rays sample the mantle wedge, the delay times are quite high. This dt pattern depicts the slab as a weakly anisotropic region and suggests that the main source of anisotropy in the subduction zone is the surrounding asthenosphere (Baccheschi et al., submitted to JGR). We also determined the attenuation structure of the slab and of the surrounding regions by the inversion of high quality S-waves t* from slab earthquakes. We obtained high resolution Qs model down to 300 km depth. The results indicate low values of Qs (Qs values down to 200) corresponding to crustal layers (down to 25 km depth), while the slab is characterized by higher but heterogeneous Qs structure (Qs values up to 1100). At 100 km depth the high Qs body is well reconstructed beneath the Calabrian arc and at 200 km depth it is extended offshore the Southern Tyrrhenian Basin beneath the Aeolian Islands. These preliminary attenuation results allowed us to better define the geometry and the boundary of the Ionian slab and distinguish between anisotropy in the slab and in the mantle wedge.
    Description: Published
    Description: Prato
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: anisotropy and attenuation tomography ; slab and mantle wedge dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: One of the most valuable results achieved during the work on S5 project is the implementation of a new temporary network data management that allows the integration in the National Data Center together with all other seismological data produced by INGV. This makes all data gathered during temporary experiments immediately available from the same source and in the same data format (SEED) increasing the availability for processing and analysis. Moreover the data are distributed to the scientific community using the EIDA (European Integrated Data Archive http://eida.rm.ingv.it/). The first application has been carried out for the Messina 1908-2008 experiment (WP2.2) http://dpc-s5.rm.ingv.it/en/Database-MessinaFault.html where has been achieved the complete integration of permanent networks (National Seismic Network, MedNet and Peloritani Local Network), temporary deployments (INGV-CNT and INGVCT mobile networks) and OBS data. All the procedures were used and further improved during the L'Aquila sequence (Task 4) where data was available for processing together with permanent network data as soon as it was gathered from the field giving to the scientific community the opportunity to study the evolution of the seismic sequence with higher density of stations (WP4.2) ( h t t p : / / d p c - s 5 . r m . i n g v . i t / e n / D a t a b a s e - AquilaFaultSystem.html).
    Description: Unpublished
    Description: Sede Ispra | Via Curtatone 7, Roma
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: open
    Keywords: Instruments and techniques ; Waveform archive ; Messina Strait ; L'Aquila Fault System ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In this study we present a collection of high quality S wave splitting measurements in the southern Italy subduction system. We analyzed 76 deep earthquakes located within the descending slab using the method of Silver and Chan (1991) to determine the splitting parameters ’ and dt. The local deep earthquakes allow us to analyze raypaths primarily sampling the slab and the wedge above it. Mainland Calabria is an outcropping forearc, enabling us to sample rays that propagate up the slab. S wave splitting parameters show a complex pattern of anisotropy with variable fast directions and with delay times ranging from 0.1 s to 2.2 s. We compared local S wave splitting data with SKS results at the same stations, and we found that the average dt is very different (1.8 s for SKS and 0.5 s for S). We found consistency between averaged S fast directions and the SKS splitting measurements, including a pattern of toroidal mantle flow at the SW edge of the slab. The S wave splitting parameters show frequency‐dependent behavior that we attribute to the presence of small‐scale anisotropic heterogeneities. Comparison of S splitting measurements to P wave velocity anomaly at 100–200 km depth shows that where the rays primarily sample the slab the delay times are small. In contrast, where S rays sample the mantle wedge, the delay times are quite high. This dt pattern depicts the slab as a weakly anisotropic region and suggests that the main source of anisotropy in the subduction zone is the surrounding asthenosphere.
    Description: Published
    Description: B08306
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic Anisotropy ; Subduction ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...