ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-03
    Description: The precision of skilled movement depends on sensory feedback and its refinement by local inhibitory microcircuits. One specialized set of spinal GABAergic interneurons forms axo-axonic contacts with the central terminals of sensory afferents, exerting presynaptic inhibitory control over sensory-motor transmission. The inability to achieve selective access to the GABAergic neurons responsible for this unorthodox inhibitory mechanism has left unresolved the contribution of presynaptic inhibition to motor behaviour. We used Gad2 as a genetic entry point to manipulate the interneurons that contact sensory terminals, and show that activation of these interneurons in mice elicits the defining physiological characteristics of presynaptic inhibition. Selective genetic ablation of Gad2-expressing interneurons severely perturbs goal-directed reaching movements, uncovering a pronounced and stereotypic forelimb motor oscillation, the core features of which are captured by modelling the consequences of sensory feedback at high gain. Our findings define the neural substrate of a genetically hardwired gain control system crucial for the smooth execution of movement.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292914/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292914/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fink, Andrew J P -- Croce, Katherine R -- Huang, Z Josh -- Abbott, L F -- Jessell, Thomas M -- Azim, Eiman -- MH078844/MH/NIMH NIH HHS/ -- MH093338/MH/NIMH NIH HHS/ -- NS033245/NS/NINDS NIH HHS/ -- R01 MH093338/MH/NIMH NIH HHS/ -- R01 NS033245/NS/NINDS NIH HHS/ -- R01 NS080932/NS/NINDS NIH HHS/ -- T32 HD007430/HD/NICHD NIH HHS/ -- U01 MH078844/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 1;509(7498):43-8. doi: 10.1038/nature13276.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Center for Theoretical Neuroscience, Departments of Physiology and Neuroscience, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784215" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Efferent Pathways/physiology ; Feedback, Sensory/*physiology ; Female ; Forelimb/physiology ; GABAergic Neurons/cytology/metabolism ; Glutamate Decarboxylase/genetics/metabolism ; Interneurons/cytology/metabolism ; Male ; Mice ; Models, Neurological ; Motor Skills/*physiology ; Movement/*physiology ; Neural Inhibition/*physiology ; Neurotransmitter Agents/secretion ; Presynaptic Terminals/*physiology ; Spinal Cord/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...