ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-12-24
    Description: Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O(2)(*-)), which are key mediators of cellular signalling. In the presence of Ca(2+)/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from l-arginine (l-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH(4)) and l-Arg. In the absence of BH(4), NO synthesis is abrogated and instead O(2)(*-) is generated. While NOS dysfunction occurs in diseases with redox stress, BH(4) repletion only partly restores NOS activity and NOS-dependent vasodilation. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation. Under oxidative stress, S-glutathionylation occurs through thiol-disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione. Cysteine residues are critical for the maintenance of eNOS function; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O(2)(*-) generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O(2)(*-) generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol-specific reducing agents, which reverse this S-glutathionylation. Thus, S-glutathionylation of eNOS is a pivotal switch providing redox regulation of cellular signalling, endothelial function and vascular tone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370391/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370391/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Chun-An -- Wang, Tse-Yao -- Varadharaj, Saradhadevi -- Reyes, Levy A -- Hemann, Craig -- Talukder, M A Hassan -- Chen, Yeong-Renn -- Druhan, Lawrence J -- Zweier, Jay L -- K99 HL103846/HL/NHLBI NIH HHS/ -- K99 HL103846-02/HL/NHLBI NIH HHS/ -- R01 HL038324/HL/NHLBI NIH HHS/ -- R01 HL038324-20/HL/NHLBI NIH HHS/ -- R01 HL063744/HL/NHLBI NIH HHS/ -- R01 HL063744-09/HL/NHLBI NIH HHS/ -- R01HL103846/HL/NHLBI NIH HHS/ -- R01HL38324/HL/NHLBI NIH HHS/ -- R01HL63744/HL/NHLBI NIH HHS/ -- R01HL65608/HL/NHLBI NIH HHS/ -- R01HL83237/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Dec 23;468(7327):1115-8. doi: 10.1038/nature09599.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179168" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cells, Cultured ; Dithiothreitol/pharmacology ; Endothelial Cells/metabolism ; Endothelium, Vascular/*metabolism ; Glutathione/*metabolism ; Humans ; Male ; Mercaptoethanol/pharmacology ; Mutation ; Nitric Oxide Synthase Type III/genetics/*metabolism ; Oxidation-Reduction ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY ; Rats, Sprague-Dawley ; Reducing Agents/pharmacology ; Signal Transduction ; Vasodilation/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-23
    Description: Reported trends in the mean and variability of coastal upwelling in eastern boundary currents have raised concerns about the future of these highly productive and biodiverse marine ecosystems. However, the instrumental records on which these estimates are based are insufficiently long to determine whether such trends exceed preindustrial limits. In the California Current, a 576-year reconstruction of climate variables associated with winter upwelling indicates that variability increased over the latter 20th century to levels equaled only twice during the past 600 years. This modern trend in variance may be unique, because it appears to be driven by an unprecedented succession of extreme, downwelling-favorable, winter climate conditions that profoundly reduce productivity for marine predators of commercial and conservation interest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Black, Bryan A -- Sydeman, William J -- Frank, David C -- Griffin, Daniel -- Stahle, David W -- Garcia-Reyes, Marisol -- Rykaczewski, Ryan R -- Bograd, Steven J -- Peterson, William T -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1498-502. doi: 10.1126/science.1253209.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA. bryan.black@utexas.edu. ; Farallon Institute for Advanced Ecosystem Research, 101 H Street, Suite Q, Petaluma, CA 94952, USA. ; Swiss Federal Research Institute WSL, Zurcherstrasse 111, CH-8903 Birmensdorf, Switzerland and Oeschger Centre for Climate Change Research, University of Bern, Zahringerstrasse 25, CH-3012 Bern, Switzerland. ; Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA. ; Department of Geosciences, University of Arkansas, 216 Ozark Hall, Fayetteville, AR 72701, USA. ; Department of Biological Sciences and Marine Science Program, University of South Carolina, 701 Sumter Street, Columbia, SC 29208, USA. ; Environmental Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), 1352 Lighthouse Avenue, Pacific Grove, CA 93950, USA. ; Northwest Fisheries Science Center, Hatfield Marine Science Center, NOAA, 2030 Southeast Marine Science Drive, Newport, OR 97365, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237100" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquatic Organisms ; Biodiversity ; Climate Change ; *Ecosystem ; Food Chain ; *Oceans and Seas ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-14
    Description: Pore-forming toxins are critical virulence factors for many bacterial pathogens and are central to Staphylococcus aureus-mediated killing of host cells. S. aureus encodes pore-forming bi-component leukotoxins that are toxic towards neutrophils, but also specifically target other immune cells. Despite decades since the first description of staphylococcal leukocidal activity, the host factors responsible for the selectivity of leukotoxins towards different immune cells remain unknown. Here we identify the human immunodeficiency virus (HIV) co-receptor CCR5 as a cellular determinant required for cytotoxic targeting of subsets of myeloid cells and T lymphocytes by the S. aureus leukotoxin ED (LukED). We further demonstrate that LukED-dependent cell killing is blocked by CCR5 receptor antagonists, including the HIV drug maraviroc. Remarkably, CCR5-deficient mice are largely resistant to lethal S. aureus infection, highlighting the importance of CCR5 targeting in S. aureus pathogenesis. Thus, depletion of CCR5(+) leukocytes by LukED suggests a new immune evasion mechanism of S. aureus that can be therapeutically targeted.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536884/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536884/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonzo, Francis 3rd -- Kozhaya, Lina -- Rawlings, Stephen A -- Reyes-Robles, Tamara -- DuMont, Ashley L -- Myszka, David G -- Landau, Nathaniel R -- Unutmaz, Derya -- Torres, Victor J -- F32 AI098395/AI/NIAID NIH HHS/ -- R01 AI065303/AI/NIAID NIH HHS/ -- R01-AI065303/AI/NIAID NIH HHS/ -- R21 AI087973/AI/NIAID NIH HHS/ -- R21-AI087973/AI/NIAID NIH HHS/ -- R42-MH084372-02A1/MH/NIMH NIH HHS/ -- R56-AI091856-01A1/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jan 3;493(7430):51-5. doi: 10.1038/nature11724. Epub 2012 Dec 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Toxins/*metabolism ; CCR5 Receptor Antagonists ; Cell Death ; Cells, Cultured ; Dendritic Cells/cytology/immunology/metabolism ; Exotoxins/*metabolism ; Female ; Humans ; Immune Evasion ; Immunologic Memory ; Jurkat Cells ; Mice ; Myeloid Cells/cytology/immunology/metabolism ; Receptors, CCR5/*metabolism ; Staphylococcus aureus/immunology/*pathogenicity ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-16
    Description: RNA interference (RNAi) is a conserved mechanism in which small interfering RNAs (siRNAs) guide the degradation of cognate RNAs, but also promote heterochromatin assembly at repetitive DNA elements such as centromeric repeats. However, the full extent of RNAi functions and its endogenous targets have not been explored. Here we show that, in the fission yeast Schizosaccharomyces pombe, RNAi and heterochromatin factors cooperate to silence diverse loci, including sexual differentiation genes, genes encoding transmembrane proteins, and retrotransposons that are also targeted by the exosome RNA degradation machinery. In the absence of the exosome, transcripts are processed preferentially by the RNAi machinery, revealing siRNA clusters and a corresponding increase in heterochromatin modifications across large domains containing genes and retrotransposons. We show that the generation of siRNAs and heterochromatin assembly by RNAi is triggered by a mechanism involving the canonical poly(A) polymerase Pla1 and an associated RNA surveillance factor Red1, which also activate the exosome. Notably, siRNA production and heterochromatin modifications at these target loci are regulated by environmental growth conditions, and by developmental signals that induce gene expression during sexual differentiation. Our analyses uncover an interaction between RNAi and the exosome that is conserved in Drosophila, and show that differentiation signals modulate RNAi silencing to regulate developmental genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554839/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554839/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamanaka, Soichiro -- Mehta, Sameet -- Reyes-Turcu, Francisca E -- Zhuang, Fanglei -- Fuchs, Ryan T -- Rong, Yikang -- Robb, Gregory B -- Grewal, Shiv I S -- Z01 BC010523-04/Intramural NIH HHS/ -- Z01 BC010523-05/Intramural NIH HHS/ -- ZIA BC010523-07/Intramural NIH HHS/ -- ZIA BC010523-09/Intramural NIH HHS/ -- ZIA BC010523-10/Intramural NIH HHS/ -- ZIA BC011208-01/Intramural NIH HHS/ -- ZIA BC011208-02/Intramural NIH HHS/ -- ZIA BC011208-03/Intramural NIH HHS/ -- ZIA BC011208-04/Intramural NIH HHS/ -- England -- Nature. 2013 Jan 24;493(7433):557-60. doi: 10.1038/nature11716. Epub 2012 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151475" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila melanogaster/genetics ; Exome/genetics ; Gene Expression Regulation, Fungal/*genetics ; Genes, Fungal/*genetics ; Heterochromatin/genetics ; Multigene Family/genetics ; Polynucleotide Adenylyltransferase/genetics ; *RNA Interference ; RNA Stability/genetics ; RNA, Fungal/genetics ; RNA, Small Interfering/genetics ; Retroelements/*genetics ; Schizosaccharomyces/cytology/enzymology/*genetics/*growth & development ; Schizosaccharomyces pombe Proteins/genetics/metabolism ; Sex Differentiation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-04-29
    Description: Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects beta-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate beta-glucan polymers, Dectin-1 signalling is only activated by particulate beta-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodridge, Helen S -- Reyes, Christopher N -- Becker, Courtney A -- Katsumoto, Tamiko R -- Ma, Jun -- Wolf, Andrea J -- Bose, Nandita -- Chan, Anissa S H -- Magee, Andrew S -- Danielson, Michael E -- Weiss, Arthur -- Vasilakos, John P -- Underhill, David M -- AI066120/AI/NIAID NIH HHS/ -- AI071116/AI/NIAID NIH HHS/ -- R01 AI066120/AI/NIAID NIH HHS/ -- R01 AI066120-05/AI/NIAID NIH HHS/ -- R01 AI071116/AI/NIAID NIH HHS/ -- R01 AI071116-04/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Apr 28;472(7344):471-5. doi: 10.1038/nature10071.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IBD and Immunobiology Research Institute, 8700 Beverly Boulevard, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21525931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD45/deficiency/metabolism ; Cell Wall/chemistry/immunology ; Cells, Cultured ; Humans ; Immunity, Innate/*immunology ; Immunological Synapses/*immunology ; Lectins, C-Type ; Macrophages/immunology ; Membrane Proteins/deficiency/genetics/*immunology ; Mice ; *Models, Immunological ; Nerve Tissue Proteins/deficiency/genetics/*immunology ; Phagocytosis/*immunology ; Reactive Oxygen Species/metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class 3/deficiency/metabolism ; Saccharomyces cerevisiae/chemistry/immunology ; Signal Transduction/immunology ; Solubility ; beta-Glucans/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-06-23
    Description: Tumour suppressor genes encode a broad class of molecules whose mutational attenuation contributes to malignant progression. In the canonical situation, the tumour suppressor is completely inactivated through a two-hit process involving a point mutation in one allele and chromosomal deletion of the other. Here, to identify tumour suppressor genes in lymphoma, we screen a short hairpin RNA library targeting genes deleted in human lymphomas. We functionally identify those genes whose suppression promotes tumorigenesis in a mouse lymphoma model. Of the nine tumour suppressors we identified, eight correspond to genes occurring in three physically linked 'clusters', suggesting that the common occurrence of large chromosomal deletions in human tumours reflects selective pressure to attenuate multiple genes. Among the new tumour suppressors are adenosylmethionine decarboxylase 1 (AMD1) and eukaryotic translation initiation factor 5A (eIF5A), two genes associated with hypusine, a unique amino acid produced as a product of polyamine metabolism through a highly conserved pathway. Through a secondary screen surveying the impact of all polyamine enzymes on tumorigenesis, we establish the polyamine-hypusine axis as a new tumour suppressor network regulating apoptosis. Unexpectedly, heterozygous deletions encompassing AMD1 and eIF5A often occur together in human lymphomas and co-suppression of both genes promotes lymphomagenesis in mice. Thus, some tumour suppressor functions can be disabled through a two-step process targeting different genes acting in the same pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530829/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530829/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scuoppo, Claudio -- Miething, Cornelius -- Lindqvist, Lisa -- Reyes, Jose -- Ruse, Cristian -- Appelmann, Iris -- Yoon, Seungtai -- Krasnitz, Alexander -- Teruya-Feldstein, Julie -- Pappin, Darryl -- Pelletier, Jerry -- Lowe, Scott W -- CA087497/CA/NCI NIH HHS/ -- CA148532/CA/NCI NIH HHS/ -- MOP-106530/Canadian Institutes of Health Research/Canada -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA087497/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jul 12;487(7406):244-8. doi: 10.1038/nature11126.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722845" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Disease Models, Animal ; Female ; Gene Deletion ; Gene Regulatory Networks ; Genetic Testing ; Humans ; Lymphoma, B-Cell/*genetics/physiopathology ; Lysine/*analogs & derivatives/chemistry ; Mice ; Mice, Inbred C57BL ; Polyamines/*chemistry ; RNA, Small Interfering/genetics/metabolism ; Reproducibility of Results ; Tumor Suppressor Proteins/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-09-21
    Description: Stressors motivate an array of adaptive responses ranging from 'fight or flight' to an internal urgency signal facilitating long-term goals. However, traumatic or chronic uncontrollable stress promotes the onset of major depressive disorder, in which acute stressors lose their motivational properties and are perceived as insurmountable impediments. Consequently, stress-induced depression is a debilitating human condition characterized by an affective shift from engagement of the environment to withdrawal. An emerging neurobiological substrate of depression and associated pathology is the nucleus accumbens, a region with the capacity to mediate a diverse range of stress responses by interfacing limbic, cognitive and motor circuitry. Here we report that corticotropin-releasing factor (CRF), a neuropeptide released in response to acute stressors and other arousing environmental stimuli, acts in the nucleus accumbens of naive mice to increase dopamine release through coactivation of the receptors CRFR1 and CRFR2. Remarkably, severe-stress exposure completely abolished this effect without recovery for at least 90 days. This loss of CRF's capacity to regulate dopamine release in the nucleus accumbens is accompanied by a switch in the reaction to CRF from appetitive to aversive, indicating a diametric change in the emotional response to acute stressors. Thus, the current findings offer a biological substrate for the switch in affect which is central to stress-induced depressive disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475726/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475726/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lemos, Julia C -- Wanat, Matthew J -- Smith, Jeffrey S -- Reyes, Beverly A S -- Hollon, Nick G -- Van Bockstaele, Elisabeth J -- Chavkin, Charles -- Phillips, Paul E M -- F31 MH086269/MH/NIMH NIH HHS/ -- F31-MH086269/MH/NIMH NIH HHS/ -- F32-DA026273/DA/NIDA NIH HHS/ -- K05 DA020570/DA/NIDA NIH HHS/ -- R01 DA009082/DA/NIDA NIH HHS/ -- R01 DA016782/DA/NIDA NIH HHS/ -- R01 DA030074/DA/NIDA NIH HHS/ -- R01 MH079292/MH/NIMH NIH HHS/ -- R01-DA009082/DA/NIDA NIH HHS/ -- R01-DA016782/DA/NIDA NIH HHS/ -- R01-DA030074/DA/NIDA NIH HHS/ -- R01-MH079292/MH/NIMH NIH HHS/ -- England -- Nature. 2012 Oct 18;490(7420):402-6. doi: 10.1038/nature11436. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992525" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Appetitive Behavior/drug effects/*physiology ; Avoidance Learning/drug effects/*physiology ; Corticotropin-Releasing Hormone/*metabolism/pharmacology ; Dopamine/metabolism/secretion ; Male ; Mice ; Mice, Inbred C57BL ; Nucleus Accumbens/*metabolism/physiopathology ; Receptors, Corticotropin-Releasing Hormone/agonists/antagonists & ; inhibitors/deficiency/metabolism ; Signal Transduction/drug effects ; Stress, Psychological/*metabolism/physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-01-30
    Description: Correlated spiking is often observed in cortical circuits, but its functional role is controversial. It is believed that correlations are a consequence of shared inputs between nearby neurons and could severely constrain information decoding. Here we show theoretically that recurrent neural networks can generate an asynchronous state characterized by arbitrarily low mean spiking correlations despite substantial amounts of shared input. In this state, spontaneous fluctuations in the activity of excitatory and inhibitory populations accurately track each other, generating negative correlations in synaptic currents which cancel the effect of shared input. Near-zero mean correlations were seen experimentally in recordings from rodent neocortex in vivo. Our results suggest a reexamination of the sources underlying observed correlations and their functional consequences for information processing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861483/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861483/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Renart, Alfonso -- de la Rocha, Jaime -- Bartho, Peter -- Hollender, Liad -- Parga, Nestor -- Reyes, Alex -- Harris, Kenneth D -- DC-005787-01A1/DC/NIDCD NIH HHS/ -- DC009947/DC/NIDCD NIH HHS/ -- MH073245/MH/NIMH NIH HHS/ -- R01 DC009947/DC/NIDCD NIH HHS/ -- R01 DC009947-02/DC/NIDCD NIH HHS/ -- R01 MH073245/MH/NIMH NIH HHS/ -- R01 MH073245-05/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 29;327(5965):587-90. doi: 10.1126/science.1179850.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA. arenart@andromeda.rutgers.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110507" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Algorithms ; Animals ; Cerebral Cortex/cytology/*physiology ; Computer Simulation ; Excitatory Postsynaptic Potentials ; Inhibitory Postsynaptic Potentials ; *Models, Neurological ; Nerve Net/*physiology ; Neural Inhibition ; Neural Pathways/*physiology ; Neurons/*physiology ; Rats ; Rats, Sprague-Dawley ; Synapses/*physiology ; *Synaptic Potentials ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-09-10
    Description: Our goal is to develop a vaccine that sustainably prevents Plasmodium falciparum (Pf) malaria in 〉/=80% of recipients. Pf sporozoites (PfSPZ) administered by mosquito bites are the only immunogens shown to induce such protection in humans. Such protection is thought to be mediated by CD8(+) T cells in the liver that secrete interferon-gamma (IFN-gamma). We report that purified irradiated PfSPZ administered to 80 volunteers by needle inoculation in the skin was safe, but suboptimally immunogenic and protective. Animal studies demonstrated that intravenous immunization was critical for inducing a high frequency of PfSPZ-specific CD8(+), IFN-gamma-producing T cells in the liver (nonhuman primates, mice) and conferring protection (mice). Our results suggest that intravenous administration of this vaccine will lead to the prevention of infection with Pf malaria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epstein, J E -- Tewari, K -- Lyke, K E -- Sim, B K L -- Billingsley, P F -- Laurens, M B -- Gunasekera, A -- Chakravarty, S -- James, E R -- Sedegah, M -- Richman, A -- Velmurugan, S -- Reyes, S -- Li, M -- Tucker, K -- Ahumada, A -- Ruben, A J -- Li, T -- Stafford, R -- Eappen, A G -- Tamminga, C -- Bennett, J W -- Ockenhouse, C F -- Murphy, J R -- Komisar, J -- Thomas, N -- Loyevsky, M -- Birkett, A -- Plowe, C V -- Loucq, C -- Edelman, R -- Richie, T L -- Seder, R A -- Hoffman, S L -- 5R44AI055229-07/AI/NIAID NIH HHS/ -- 5R44AI058375-05/AI/NIAID NIH HHS/ -- 5R44AI058499-05/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):475-80. doi: 10.1126/science.1211548. Epub 2011 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD 20910, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903775" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Animals ; Antibodies, Protozoan/blood/immunology ; Antigens, Protozoan/immunology ; CD8-Positive T-Lymphocytes/*immunology ; Humans ; Injections, Intravenous ; Injections, Subcutaneous ; Interferon-gamma/biosynthesis/immunology ; Liver/*immunology ; Macaca mulatta ; Malaria Vaccines/administration & dosage/adverse effects/*immunology ; Malaria, Falciparum/*prevention & control ; Mice ; Middle Aged ; Plasmodium falciparum/*immunology ; Rabbits ; Sporozoites/*immunology ; Vaccines, Attenuated/administration & dosage/adverse effects/immunology ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-06-08
    Description: The intestinal microflora, typically equated with bacteria, influences diseases such as obesity and inflammatory bowel disease. Here, we show that the mammalian gut contains a rich fungal community that interacts with the immune system through the innate immune receptor Dectin-1. Mice lacking Dectin-1 exhibited increased susceptibility to chemically induced colitis, which was the result of altered responses to indigenous fungi. In humans, we identified a polymorphism in the gene for Dectin-1 (CLEC7A) that is strongly linked to a severe form of ulcerative colitis. Together, our findings reveal a eukaryotic fungal community in the gut (the "mycobiome") that coexists with bacteria and substantially expands the repertoire of organisms interacting with the intestinal immune system to influence health and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iliev, Iliyan D -- Funari, Vincent A -- Taylor, Kent D -- Nguyen, Quoclinh -- Reyes, Christopher N -- Strom, Samuel P -- Brown, Jordan -- Becker, Courtney A -- Fleshner, Phillip R -- Dubinsky, Marla -- Rotter, Jerome I -- Wang, Hanlin L -- McGovern, Dermot P B -- Brown, Gordon D -- Underhill, David M -- 086558/Wellcome Trust/United Kingdom -- AI071116/AI/NIAID NIH HHS/ -- P01-DK046763/DK/NIDDK NIH HHS/ -- R01 DK093426/DK/NIDDK NIH HHS/ -- UL1 RR033176/RR/NCRR NIH HHS/ -- UL1 TR000124/TR/NCATS NIH HHS/ -- UL1RR033176/RR/NCRR NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Jun 8;336(6086):1314-7. doi: 10.1126/science.1221789. Epub 2012 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22674328" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Fungal/blood ; Candida tropicalis/immunology/isolation & purification/pathogenicity/physiology ; Colitis, Ulcerative/chemically induced/*immunology/*microbiology ; Colon/immunology/*microbiology ; Colony Count, Microbial ; Dextran Sulfate ; Disease Susceptibility ; Female ; Fungi/classification/*immunology/isolation & purification/*physiology ; Haplotypes ; Humans ; Immunity, Innate ; Immunity, Mucosal ; Intestinal Mucosa/immunology/*microbiology ; Intestines/immunology/microbiology ; Lectins, C-Type/deficiency/*genetics/*metabolism ; Metagenome ; Mice ; Mice, Inbred C57BL ; Polymorphism, Single Nucleotide
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...