ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles
  • Data  (1)
  • AGE; Calypso Square Core System; CASQS; DEPTH, sediment/rock; Foraminifera, planktic δ15N; Foraminifera, planktic δ15N, standard error; Globigerinoides ruber, δ15N; Globigerinoides ruber, δ15N, standard error; IMAGES IX - PAGE; Marion Dufresne (1995); MD022550C2; MD02-2550C2; MD127; Number of measurements; Number of subsamples; Orbulina universa, δ15N; Orbulina universa, δ15N, standard error; Orca Basin  (1)
  • 2010-2014  (1)
Collection
  • Articles
  • Data  (1)
Keywords
Publisher
Years
  • 2010-2014  (1)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Meckler, Anna Nele; Ren, Haojia Abby; Sigman, Daniel M; Gruber, Nicolas; Plessen, Birgit; Schubert, Carsten J; Haug, Gerald H (2011): Deglacial nitrogen isotope changes in the Gulf of Mexico: Evidence from bulk sedimentary and foraminifera-bound nitrogen in Orca Basin sediments. Paleoceanography, 26(4), PA4216, https://doi.org/10.1029/2011PA002156
    Publication Date: 2023-10-05
    Description: Constraining variations in marine N2-fixation over glacial-interglacial timescales is crucial for determining the role of the marine nitrogen cycle in modifying ocean productivity and climate, yet paleo-records from N2-fixation regions are sparse. Here we present new nitrogen isotope (d15N) records of bulk sediment and foraminifera test-bound (FB) nitrogen extending back to the last ice age from the oligotrophic Gulf of Mexico (GOM). Previous studies indicate a substantial terrestrial input during the last ice age and early deglacial, for which we attempt to correct the bulk sediment d15N using its observed relationship with the C/N ratio. Both corrected bulk and FB-d15N reveal a substantial glacial-to-Holocene decrease of d15N toward Holocene values of around 2.5 per mil, similar to observations from the Caribbean. This d15N change is most likely due to a glacial-to-Holocene increase in regional N2-fixation. A deglacial peak in the FB-d15N of thermocline dwelling foraminifera Orbulina universa probably reflects a whole ocean increase in the d15N of nitrate during deglaciation. The d15N of the surface dwelling foraminifera Globigerinoides ruber and the corrected bulk d15N show little sign of this deglacial peak, both decreasing from last glacial values much earlier than does the d15N of O. universa; this may indicate that G. ruber and bulk N reflect the euphotic zone signal of an early local increase in N2-fixation. Our results add to the evidence that, during the last ice age, the larger iron input from dust did not lead to enhanced N2-fixation in this region. Rather, the glacial-to-Holocene decrease in d15N is best explained by a response of N2-fixation within the Atlantic to the deglacial increase in global ocean denitrification.
    Keywords: AGE; Calypso Square Core System; CASQS; DEPTH, sediment/rock; Foraminifera, planktic δ15N; Foraminifera, planktic δ15N, standard error; Globigerinoides ruber, δ15N; Globigerinoides ruber, δ15N, standard error; IMAGES IX - PAGE; Marion Dufresne (1995); MD022550C2; MD02-2550C2; MD127; Number of measurements; Number of subsamples; Orbulina universa, δ15N; Orbulina universa, δ15N, standard error; Orca Basin
    Type: Dataset
    Format: text/tab-separated-values, 107 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...