ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy  (3)
  • 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state  (2)
  • 2010-2014  (5)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Since 2004, a continuous Global Positioning System (GPS) network has been operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) to investigate active tectonic processes in Italy and the surrounding regions, which are still largely debated. This important infrastructure is known as Rete Integrata Nazionale GPS (RING) network, and it consists of about 130 stations that are deployed all over Italy. The development and realization of a stable GPS monumentation, its integration with seismological instruments, and the choice of both satellite and internet data transmission, make this network one of the most innovative and reliable CGPS networks in the world. The technologically advanced development of the RING network has been accompanied by the development of different data processing strategies, which are mainly dependent on the use of different GPS analysis software. The different software-related solutions are here compared at different scales for this large network, and the consistency is evaluated and quantified within an RMS value of 0.3 mm/yr.
    Description: Published
    Description: 39-54
    Description: 1.9. Rete GPS nazionale
    Description: JCR Journal
    Description: open
    Keywords: Geodesy ; Seismotectonics ; CGPS network ; GPS data analysis ; Central Mediterranean ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: We present the INGV (Italian National Institute of Geophysics and Volcanology) geodetic research infrastructure and related facilities, dedicated to the observation and monitoring of current deformation of the plate boundary between Africa and Eurasia. The recent increase of continuous GPS (CGPS) stations in the Central Mediterranean plate boundary zone offers the opportunity to study in detail the present-day kinematics of this actively deforming region. For answering all the open questions related to this complex area, INGV deployed a permanent, integrated and real-time monitoring CGPS network (RING) all over Italy. The RING network (http:/ring.gm.ingv.it) is now constituted by more than 150 stations. All stations have high quality GPS monuments and most of them are co-located with broadband or very broadband seismometers and strong motion sensors. The RING CGPS sites acquire at 1Hz and 30s sampling rates (some of them acquire at 10 Hz) and are connected in real-time to the INGV acquisition centers located in Roma and Grottaminarda. Real-time GPS data are transmitted using different systems, such as satellite systems, Internet, GPRS/UMTS and wireless networks. The differentiation of data transmission type and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. Furthermore, the INGV data acquisition centers acquire, archive and analyze most of the Italian CGPS stations managed by regional or national data providers (such as local Authorities and nation-wide industries), integrating more than 350 stations of the CGPS scientific and commercial networks existing in the Italian region. To manage data acquisition, storage, distribution and access we developed dedicated facilities including new softwares for data acquisition and a web-based collaborative environment for management of data and metadata. The GPS analysis is carried out with the three main geodetic-quality softwares used in the GPS scientific community: Bernese GAMIT an GIPSY-OASIS. The resulting daily solutions are aligned to the ITRF2005 reference frame. Stable plate reference frames are realized by minimizing the horizontal velocities at sites on the Eurasia and Nubia plates, respectively. The different software-related solutions consistency RMS is within 0.3 mm/yr (Avallone et al., 2010). The solutions are then evaluated with regard to the numerous scientific motivations behind this presentation, ranging from the definition of strain distribution and microplate kinematics within the plate boundary, to the evaluation of tectonic strain accumulation on active faults. The RING network is strongly contributing to the definition of GPS velocity field in the Italian region, and now is able to furnish a newly and up to date view of this actively deforming part of the Nubia-Eurasia plate boundary. INGV is now aiming to make the RING (and integrated CGPS networks) data and related products publicly available for the scientific community. We believe that our network represents an important reality in the framework of the EPOS infrastructure and we strongly support the idea of an European research approach to data sharing among the scientific community. We will present (a) the current CGPS site distribution, (b) the technological description of the data acquisition, storage and distribution at INGV centers, (c) the results of CGPS data analysis, and (d) the planned data access for the scientific community.
    Description: Published
    Description: Vienna, Geophysical Research Abstracts Vol. 13, EGU2011-8626, 2011
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: GPS network ; Italy ; active deformation ; infrastructure ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento Protezione Civile
    Description: Published
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.9. Rete GPS nazionale
    Description: open
    Keywords: GPS ; 2009 L'Aquila earthquake ; postseismic ; emergency structure ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-17
    Description: OnApril 2013,alocal scale seismic network,namedOTRIONS, composed of twelve short period (1 Hz) three component seismometers, has been located in the northern part of the Apulia (Southern Italy). At each station, the acquisition systemallows the recording of data in situ and their real time transfer toa seismic laboratory located at the Dipartimento di Scienze della Terra e Geoambientali of Università di Bari "Aldo Moro". The preliminary real time detection and localization of the events is automatically realized by using the SeisComp3 software. In the first two months of data acquisition, the network recorded about one hundred low magnitude (ML〈2) earthquakes. In that follows,wepresent the results of a study aimed at investigating the crustal structure of the Gargano promontory. To this aimweanalyzed the seismic events recorded in the area by the “Istituto Nazionale di Geofisica e Vulcanologia” (INGV) in the period 2006-2012 and the seismic events recorded by the OTRIONS network in the first two months of acquisition (march and april 2013). From the inversion of P and S travel times of INGV events we inferred a preliminary 3-layer Vp velocity model. The Moho is located at a depth of 27-30 km, in agreement with previous studies. A linearized inversion scheme that uses Velest (Kissling et al., 1994), allowed us to infer a 1D velocity model from the joint inversion of INGV and OTRIONS datasets of P and S travel times. On the whole, the number of earthquakes recorded by the OTRIONS seismic network is higher than 1200 in the period april,2013-march,2014.
    Description: Published
    Description: Istanbul
    Description: 1T. Geodinamica e interno della Terra
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: 4IT. Banche dati
    Description: 6IT. Sale operative
    Description: open
    Keywords: velocity ; model ; gargano ; puglia ; OTRIONS ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-17
    Description: On April 2013, a local scale seismic network, named OTRIONS, composed of twelve short period (1 Hz) three component seismometers, has been located in the northern part of the Apulia (southern Italy). In the first two months of data acquisition, the network recorded about one hundred very small (ML〈2) magnitude earthquakes. A three-layer 1D VP velocity model was preliminarily computed, using the recordings of earthquakes occurred in the area in the period 2006-2012 and recorded by the national seismic network of INGV (Istituto Nazionale di Geofisica e Vulcanologia). This model was calibrated by means of a multi-scale approach, based on a global search of the minimum misfit between observed and theoretical travel times. At each step of the inversion, a grid-search technique was implemented to infer the elastic properties of the layers, by using HYPO71 to compute the forward models. In a further step, we used P and S travel times of both INGV and OTRIONS events to infer a minimum 1D VP velocity model, using a classical linearized inversion approach. Owing to the relatively small number of data and poor coverage of the area, in the inversion procedure, the VP/VS ratio was fixed to 1.82, as inferred from a modified Wadati diagram. The final 1D velocity model was obtained by averaging the inversion results arising from nine different initial velocity models. The inferred VP velocity model shows a gradual increase of P wave velocity with increasing the depth. The model is well constrained by data until to a depth of about 25-30 km.
    Description: Published
    Description: S0437
    Description: 1T. Geodinamica e interno della Terra
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: 2IT. Laboratori sperimentali e analitici
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: 4IT. Banche dati
    Description: 6IT. Sale operative
    Description: JCR Journal
    Description: open
    Keywords: velocity ; model ; gargano ; puglia ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...