ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-02-04
    Description: Induced pluripotent stem cells (iPSCs) offer immense potential for regenerative medicine and studies of disease and development. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem (ES) cells. However, it remains unknown how complete the reestablishment of ES-cell-like DNA methylation patterns is throughout the genome. Here we report the first whole-genome profiles of DNA methylation at single-base resolution in five human iPSC lines, along with methylomes of ES cells, somatic cells, and differentiated iPSCs and ES cells. iPSCs show significant reprogramming variability, including somatic memory and aberrant reprogramming of DNA methylation. iPSCs share megabase-scale differentially methylated regions proximal to centromeres and telomeres that display incomplete reprogramming of non-CG methylation, and differences in CG methylation and histone modifications. Lastly, differentiation of iPSCs into trophoblast cells revealed that errors in reprogramming CG methylation are transmitted at a high frequency, providing an iPSC reprogramming signature that is maintained after differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100360/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100360/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Pelizzola, Mattia -- Kida, Yasuyuki S -- Hawkins, R David -- Nery, Joseph R -- Hon, Gary -- Antosiewicz-Bourget, Jessica -- O'Malley, Ronan -- Castanon, Rosa -- Klugman, Sarit -- Downes, Michael -- Yu, Ruth -- Stewart, Ron -- Ren, Bing -- Thomson, James A -- Evans, Ronald M -- Ecker, Joseph R -- 1U01ES017166-01/ES/NIEHS NIH HHS/ -- DK062434/DK/NIDDK NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- U01 ES017166-01/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 3;471(7336):68-73. doi: 10.1038/nature09798. Epub 2011 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21289626" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Differentiation/genetics ; Cell Line ; Cellular Reprogramming/*genetics ; CpG Islands/genetics ; DNA Methylation/*genetics ; Embryonic Stem Cells/cytology/metabolism ; Epigenomics ; Epistasis, Genetic/*genetics ; Fibroblasts/cytology/metabolism ; Genome, Human/*genetics ; Histones/metabolism ; Humans ; Induced Pluripotent Stem Cells/cytology/*metabolism ; Trophoblasts/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-08
    Description: Natural epigenetic variation provides a source for the generation of phenotypic diversity, but to understand its contribution to such diversity, its interaction with genetic variation requires further investigation. Here we report population-wide DNA sequencing of genomes, transcriptomes and methylomes of wild Arabidopsis thaliana accessions. Single cytosine methylation polymorphisms are not linked to genotype. However, the rate of linkage disequilibrium decay amongst differentially methylated regions targeted by RNA-directed DNA methylation is similar to the rate for single nucleotide polymorphisms. Association analyses of these RNA-directed DNA methylation regions with genetic variants identified thousands of methylation quantitative trait loci, which revealed the population estimate of genetically dependent methylation variation. Analysis of invariably methylated transposons and genes across this population indicates that loci targeted by RNA-directed DNA methylation are epigenetically activated in pollen and seeds, which facilitates proper development of these structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798000/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798000/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitz, Robert J -- Schultz, Matthew D -- Urich, Mark A -- Nery, Joseph R -- Pelizzola, Mattia -- Libiger, Ondrej -- Alix, Andrew -- McCosh, Richard B -- Chen, Huaming -- Schork, Nicholas J -- Ecker, Joseph R -- F32 HG004830/HG/NHGRI NIH HHS/ -- F32HG004830/HG/NHGRI NIH HHS/ -- K99 GM100000/GM/NIGMS NIH HHS/ -- K99GM100000/GM/NIGMS NIH HHS/ -- UL1 RR025774/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Mar 14;495(7440):193-8. doi: 10.1038/nature11968. Epub 2013 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23467092" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics ; DNA Methylation/genetics ; DNA Transposable Elements/genetics ; Epigenesis, Genetic/*genetics ; Epigenomics ; Genetic Variation/*genetics ; Genome, Plant/*genetics ; Linkage Disequilibrium/genetics ; Pollen/genetics ; Polymorphism, Genetic/genetics ; Quantitative Trait Loci ; RNA, Messenger/analysis/genetics ; RNA, Plant/genetics ; Seeds/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...