ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (2)
  • Geological Society of America  (1)
  • Wiley-Blackwell  (1)
  • 2010-2014  (2)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: The northeast-striking, dextral-reverse Alpine fault transitions into the Marlborough Fault System near Inchbonnie in the central South Island, New Zealand. New slip-rate estimates for the Alpine fault are presented following a reassessment of the geomorphology and age of displaced late Holocene alluvial surfaces of the Taramakau River at Inchbonnie. Progressive avulsion and abandonment of the Taramakau floodplain, aided by fault movements during the late Holocene, have preserved a left-stepping fault scarp that grows in height to the northeast. Surveyed dextral (22.5 ± 2 m) and vertical (4.8 ± 0.5 m) displacements across a left stepover in the fault across an alluvial surface are combined with a precise maximum age from a remnant tree stump (≥1590–1730 yr) to yield dextral, vertical, and reverse-slip rates of 13.6 ± 1.8, 2.9 ± 0.4, and 3.4 ± 0.6 mm/yr, respectively. These values are larger (dextral) and smaller (dip slip) than previous estimates for this site, but they refl ect advances in the local chronology of surfaces and represent improved time-averaged results over 1.7 k.y. A geological kinematic circuit constructed for the central South Island demonstrates that (1) 69%–89% of the Australian-Pacific plate motion is accommodated by the major faults (Alpine-Hope-Kakapo) in this transitional area, (2) the 50% drop in slip rate on the Alpine fault between Hokitika and Inchbonnie is taken up by the Hope and Kakapo faults at the southwestern edge of the Marlborough Fault System, and (3) the new slip rates are more compatible with contemporary models of strain partitioning presented from geodesy.
    Description: Published
    Description: 139-152
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: N/A or not JCR
    Description: reserved
    Keywords: Alpine fault ; plate boundary ; slip rate ; New Zealand ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: In this paper, we propose a new model of the crustal structure and seismotectonics for central Sicily (southern Italy) through the analysis of the depth distribution and kinematics of the instrumental seismicity, occurring during the period from 1983 to 2010, and its comparison with individual geological structures that may be active in the area. The analysed data set consists of 392 earthquakes with local magnitudes ranging from 1.0 to 4.7. We defined a new, detailed 1-D velocity model to relocate the earthquakes that occurred in central Sicily, and we calculated a Moho depth of 37 km and a mean VP/VS ratio of 1.73. The relocated seismic events are clustered mainly in the area north of Caltanissetta (e.g. Mainland Sicily) and in the northeastern sector (Madonie Mountains) of the study area; only minor and greatly dispersed seismicity is located in the western sector, near Belice, and along the southern coast, between Gela and Sciacca. The relocated hypocentral distribution depicts a bimodal pattern: 50 per cent of the events occur within the upper crust at depths less than ~16 km, 40 per cent of the events occur within the middle and depth crust, at depths between 16 and 32 km, and the remaining 10 per cent occur at subcrustal depths. The energy release pattern shows a similar depth distribution. On the basis of the kinematic analysis of 38 newly computed focal plane solutions, two major geographically distinct seismotectonic domains are distinguished: the Madonie Mountain domain, with prevalent extensional and extensional-oblique kinematics associated with upper crust Late Pliocene–Quaternary faulting, and the Mainland Sicily domain, with prevalent compressional and compressional-oblique kinematics associated with thrust faulting, at mid to deep crust depth, along the north-dipping Sicilian Basal Thrust (SBT). The stress inversion of the Mainland Sicily focal solutions integrated with neighbouring mechanisms available in the literature highlights a regional homogeneous compressional tensor, with a subhorizontal NNW–SSE-striking σ1 axis. In addition, on the basis of geodetic data, the Mainland Sicily domain may be attributed to the SSE-ward thrusting of the Mainland Sicily block along the SBT plane. Seismogenic shearing along the SBT at mid-crustal depths was responsible for the unexpected Belice 1968 earthquake (Mw 6.1), with evident implications in terms of hazard assessment.
    Description: Published
    Description: 1237-2252
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: restricted
    Keywords: Seismicity and tectonics ; Continental tectonics: compressional ; Dynamics: seismotectonics ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...