ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2010-04-01
    Print ISSN: 0967-0637
    Electronic ISSN: 1879-0119
    Topics: Biology , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The radiogenic isotope composition of the Rare Earth Element (REE) neodymium (Nd) is a powerful water mass proxy for present and past ocean circulation. The processes controlling the Nd budget of the global ocean are not quantitatively understood and in particular source and sink mechanisms are still under debate. In this study we present the first full water column data set of dissolved Nd isotope compositions and Nd concentrations for the Eastern Equatorial Pacific (EEP), where one of the globally largest Oxygen Minimum Zones (OMZ) is located. This region is of particular interest for understanding the biogeochemical cycling of REEs because anoxic conditions may lead to release of REEs from the shelf, whereas high particle densities and fluxes potentially remove the REEs from the water column. Data were obtained between 1°40′N and 16°S along a nearshore and an offshore transect. Near surface zonal current bands, such as the Equatorial Undercurrent (EUC) and the Subsurface Countercurrent (SSCC), which are supplying oxygen-rich water to the OMZ are characterized by radiogenic Nd isotope signatures (εNd=−2). Surface waters in the northernmost part of the study area are even more radiogenic (εNd=+3), most likely due to release of Nd from volcanogenic material. Deep and bottom waters at the southernmost offshore station (14°S) are clearly controlled by advection of water masses with less radiogenic signatures (εNd=−7) originating from the Southern Ocean. Towards the equator, however, the deep waters show a clear trend towards more radiogenic values of up to εNd=−2. The northernmost station located in the Panama basin shows highly radiogenic Nd isotope signatures in the entire water column, which indicates that particle scavenging, downward transport and release processes play an important role. This is supported by relatively low Nd concentrations in deep waters (3000–6000 m) in the EEP (20 pmol/kg) compared to locations in the Northern and Central Pacific (40–60 pmol/kg), which suggests enhanced removal of Nd in the EEP.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: We present the first systematic study of the silicon isotope composition in the water column (δ30SiSi(OH)4) and in diatoms (δ30Sidiatom) from the underlying surface sediments in a coastal upwelling region. The surface waters upwelling on the shelf off Peru are mainly fed by southward flowing subsurface waters along the coast, which show a mean δ30SiSi(OH)4 of +1.5‰. The concentration of dissolved silicic acid (Si(OH)4) increases towards the south in these waters and with increasing water depth, suggesting lateral mixing with water masses from the south and intense remineralisation of particulate biogenic silica (bSiO2) in the water column and in the surface sediments. Surface waters in the realm of the most intense upwelling between 5°S and 15°S have only marginally elevated δ30SiSi(OH)4 values (δ30SiSi(OH)4 = +1.7‰) with respect to the source Si isotope composition, whereas further north and south, where upwelling is less pronounced, surface waters are more strongly fractionated (δ30SiSi(OH)4 up to +2.8‰) due to the stronger utilisation of the smaller amounts of available Si(OH)4. The degree of Si(OH)4 utilisation in the surface waters along the shelf estimated from the Si(OH)4 concentration data ranges from 51% to 93%. The δ30Sidiatom values of hand-picked diatoms in the underlying surface sediments vary from +0.6‰ to +2.0‰, which is within the range of the expected fractionation between surface waters and diatoms. The fractionation signal in the surface waters produced during formation of the diatoms is reflected by the δ30Sidiatom values in the underlying sediments, with the lowest δ30Sidiatom values in the main upwelling region. The silicon isotope compositions of bSiO2 (δ30SibSiO2) from the same surface sediment samples are generally much lower than the δ30Sidiatom signatures indicating a significant contamination of the bSiO2 with biogenic siliceous material other than diatoms, such as sponge spicules. This shift towards lighter δ30SibSiO2 values by up to −1.3‰ compared to δ30Sidiatom signatures for the same surface sediment samples potentially biases the interpretation of δ30Si paleorecords from sediments with low bSiO2 concentrations, and thus the reconstruction of past Si(OH)4 utilisation in surface waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 57 . pp. 587-595.
    Publication Date: 2021-05-19
    Description: Climate models with biogeochemical components predict declines in oceanic dissolved oxygen with global warming. In coastal regimes oxygen deficits represent acute ecosystem perturbations. Here, we estimate dissolved oxygen differences across the global tropical and subtropical oceans within the oxygen minimum zone (200–700-dbar depth) between 1960–1974 (an early period with reliable data) and 1990–2008 (a recent period capturing ocean response to planetary warming). In most regions of the tropical Pacific, Atlantic, and Indian Oceans the oxygen content in the 200–700-dbar layer has declined. Furthermore, at 200 dbar, the area with O2 〈70 μmol kg−1, where some large mobile macro-organisms are unable to abide, has increased by 4.5 million km2. The tropical low oxygen zones have expanded horizontally and vertically. Subsurface oxygen has decreased adjacent to most continental shelves. However, oxygen has increased in some regions in the subtropical gyres at the depths analyzed. According to literature discussed below, fishing pressure is strong in the open ocean, which may make it difficult to isolate the impact of declining oxygen on fisheries. At shallower depths we predict habitat compression will occur for hypoxia-intolerant taxa, with eventual loss of biodiversity. Should past trends in observed oxygen differences continue into the future, shifts in animal distributions and changes in ecosystem structure could accelerate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (2). pp. 1068-1083.
    Publication Date: 2019-09-23
    Description: In the tropical eastern South Pacific the Stratus Ocean Reference Station (ORS) (∼20°S, 85.5°W) is located in the transition zone between the oxygen minimum zone (OMZ) and the well-oxygenated subtropical gyre. In February/March 2012, extremely anomalous water mass properties were observed in the thermocline at the Stratus ORS. The available eddy oxygen anomaly was −10.5 × 1016 µmol. This anomalous water was contained in an anticyclonic mode-water eddy crossing the mooring site. This eddy was absorbed at that time by an anticyclonic feature located south of the Stratus mooring. This was the largest water property anomaly observed at the mooring during the 13.5 month deployment period. The sea surface height anomaly (SSHA) of the strong mode-water eddy in February/March 2012 was weak, and while the lowest and highest SSHA were related to weak eddies, SSHA is found not to be sufficient to specify the eddy strength for subsurface-intensified eddies. Still, the anticyclonic eddy, and its related water mass characteristics, could be tracked backward in time in SSHA satellite data to a formation region in April 2011 off the Chilean coast. The resulting mean westward propagation velocity was 5.5 cm s−1. This extremely long-lived eddy carried the water characteristics from the near-coastal Chilean water to the open ocean. The water mass stayed isolated during the 11 month travel time due to high rotational speed of about 20 cm s−1 leading to almost zero oxygen in the subsurface layer of the anticyclonic mode-water eddy with indications of high primary production just below the mixed layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...