ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Authors, 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Estuaries and Coasts 33 (2010): 15-29, doi:10.1007/s12237-009-9244-y.
    Description: Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.
    Description: This study was supported by the US Geological Survey’s Priority Ecosystems Science program, CALFED Bay/ Delta Program, and the University of California Center for Water Resources.
    Keywords: Numerical modeling ; Geomorphology ; Scenarios ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C09025, doi:10.1029/2004JC002727.
    Description: A large flood of the Eel River, northern California, created a thick sediment deposit between water depths of 50 and 70 m in January 1997. The freshwater plume, however, confined sediment delivery to water depths shallower than 30 m. Mechanisms proposed to explain the apparent cross-shelf transport include dispersal by oceanographic currents, resuspension by energetic waves, and gravitationally forced transport of a thin layer of fluidized mud. Field observations indicate that these processes were all active but cannot determine their relative significance or whether these mechanisms alone explain the location, size, and timing of deposition. Approximately 30% of the sediment delivered by the Eel River is accounted for in the midshelf mud bed and inner shelf, but the fate of the remaining 70% is uncertain. A three-dimensional, hydrodynamic model was used to examine potential mechanisms of sediment transport on the Eel River shelf. The model includes suspended sediment transport and was modified to account for a thin, near-bed layer of fluidized mud. It was used to simulate flood dispersal on the Eel River shelf, to compare the relative importance of transport within the near-bed fluid mud layer to suspended sediment transport, and to evaluate sediment budgets for floods. Settling properties of fine-grained sediment, both within the flood plume and the fluid mud layer, critically impact depositional patterns. To a lesser degree, wind-driven ocean currents influence the volume of sediment that escapes the shelf, and wave magnitude affects the cross-shelf location of flood deposits. Though dilute suspension accounts for a large fraction of total flux, cross-shelf transport by gravitational forcing appears necessary to produce a midshelf mud deposit similar in volume, location, and timing to those seen offshore of the Eel River.
    Description: The Office of Naval Research’s Coastal Geoscience Program supported this through program N0014-01-1-008.
    Keywords: Flood sediment dispersal ; Northern California shelf ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 118 (2013): 2045–2058, doi:10.1002/jgrf.20143.
    Description: Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and anthropogenic loss.
    Description: Funding was provided by the USGS Coastal and Marine Geology Program and the Climate and Land Use Change Research and Development Program.
    Description: 2014-04-07
    Keywords: Sediment transport ; Wetland geomorphology ; Wetland stability ; Estuarine hydrodynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C12006, doi:10.1029/2008JC005014.
    Description: A 3D hydrodynamic model (ROMS) is used to investigate lateral circulation in a partially mixed estuary driven by axial wind events and to explore the associated transport of sediments. The channel is straight with a triangular cross section. The model results suggest that driving mechanisms for lateral circulation during axial wind events are different between stratified and unstratified conditions. When the water column is largely unstratified, rotational effects do not drive significant lateral circulation. Instead, differential advection of the axial salinity gradient by wind-driven axial flow is responsible for regulating the lateral salinity gradients that in turn drive bottom-divergent/convergent lateral circulation during down/up-estuary winds. From the subtidal lateral salt balance, it is found that the development of lateral salinity gradient by wind-induced differential advection is largely counterbalanced by the advection of salt by lateral circulation itself. When the water column is stratified, the lateral flow and salinity structures below the halocline closely resemble those driven by boundary mixing, and rotational effects are important. Lateral sediment flux and the event-integrated sediment transport are from channel to shoals during down-estuary winds but reversed for up-estuary winds. Potential impacts of wind-generated waves on lateral sediment transport are evaluated with two cases representing event conditions typical of upper Chesapeake Bay. Accounting for wind wave effects results in an order of magnitude increase in lateral sediment fluxes because of greater bottom stresses and sediment resuspension.
    Description: Financial support from ONR through the Community Sediment Transport Modeling (CSTM) project.
    Keywords: Wind-driven lateral circulation ; Differential advection ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Estuarine, Coastal and Shelf Science 93 (2011): 142-150, doi:10.1016/j.ecss.2011.04.004.
    Description: Simulations of estuarine bathymetric change over decadal timescales require methods for idealization and reduction of forcing data and boundary conditions. Continuous simulations are hampered by computational and data limitations and results are rarely evaluated with observed bathymetric change data. Bathymetric change data for Suisun Bay, California span the 1867–1990 period with five bathymetric surveys during that period. The four periods of bathymetric change were modeled using a coupled hydrodynamic-sediment transport model operated at the tidal-timescale. The efficacy of idealization techniques was investigated by discontinuously simulating the four periods. The 1867–1887 period, used for calibration of wave energy and sediment parameters, was modeled with an average error of 37% while the remaining periods were modeled with error ranging from 23% to 121%. Variation in post-calibration performance is attributed to temporally variable sediment parameters and lack of bathymetric and configuration data for portions of Suisun Bay and the Delta. Modifying seaward sediment delivery and bed composition resulted in large performance increases for post-calibration periods suggesting that continuous simulation with constant parameters is unrealistic. Idealization techniques which accelerate morphological change should therefore be used with caution in estuaries where parameters may change on sub-decadal timescales. This study highlights the utility and shortcomings of estuarine geomorphic models for estimating past changes in forcing mechanisms such as sediment supply and bed composition. The results further stress the inherent difficulty of simulating estuarine changes over decadal timescales due to changes in configuration, benthic composition, and anthropogenic forcing such as dredging and channelization.
    Description: This study was supported by the U.S Geological Survey’s Priority Ecosystems Science program, CALFED Bay/Delta Program, and the University of California Center forWater Resources.
    Keywords: Estuarine geomorphology ; Sediment transport ; Modeling ; Hindcasting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 60, Suppl. (2013): S40–S57, doi:10.1016/j.csr.2012.02.004.
    Description: Tidal flats at a river mouth feature estuarine and fluvial processes that distinguish them from tidal flats without river discharge. We combine field observations and a numerical model to investigate hydrodynamics and sediment transport on deltaic tidal flats at the mouth of the Skagit River, in Puget Sound, WA during the spring freshet. River discharge over tidal flats supplies a mean volume flux, freshwater buoyancy, and suspended sediment. Despite the shallow water depths, strong horizontal density fronts and stratification develop, resulting in a baroclinic pressure gradient and tidal variability in stratification that favor flood-directed bottom stresses. In addition to these estuarine processes, the river discharge during periods of low tide drains through a network of distributary channels on the exposed tidal flats, with strongly ebb-directed stresses. The net sediment transport depends on the balance between estuarine and fluvial processes, and is modulated on a spring-neap time scale by the tides of Puget Sound. We find that the baroclinic pressure gradient and periodic stratification enhance trapping of sediment delivered by the river on the tidal flats, particularly during neap tides, and that sediment trapping also depends on settling and scour lags, particularly for finer particles. The primary means of moving sediment off of the tidal flats are the high velocities and stresses in the distributary channels during late stages of ebbs and around low tides, with sediment export predominantly occurring during spring low tides that expose a greater portion of the flats. The 3-d finite volume numerical model was evaluated against observations and had good skill overall, particularly for velocity and salinity. The model performed poorly at simulating the shallow flows around low tides as the flats drained and river discharge was confined to distributary channels, due in part to limitations in grid resolution, seabed sediment and bathymetric data, and the wetting-and-drying scheme. Consequently, the model predicted greater sediment retention on the flats than was observed.
    Description: This work was supported by the Office of Naval Research.
    Keywords: Tidal flats ; Sediment transport ; Sediment trapping ; Distributary channels ; Stratification ; Salinity fronts ; Tidal asymmetry ; Velocity skewness ; Numerical model
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): F02004, doi:10.1029/2003JF000096.
    Description: A 9 month time series of tripod-mounted optical and acoustic measurements of sediment concentration and bed elevation was used to examine depositional processes in relationship to hydrodynamic variables in the Hudson River estuary. A series of cores was also taken directly under and adjacent to the acoustic measurements to examine the relation between the depositional processes and the resulting fine-scale stratigraphy. The measurements reveal that deposition occurs as a result of sediment flux convergence behind a salinity front and that the accumulation rates are sufficient to deposit up to 25 cm of new high-porosity sediment in a single ebb-tidal phase. Subsequent dewatering and erosion reduces the thickness of the initial deposit to several centimeters. These depositional events were only observed on spring tides. Ten depositional events during two spring tidal cycles produced a seasonal deposit of 18 cm, consistent with estimates of seasonal deposition from cores. A proxy for near-bed suspended grain size variations was estimated from the combined acoustic and optical measurements, implying that the erosional processes resuspend only the finer-grained sediments, thus leaving behind silt and very fine grained sand beds. The thickness of the deposited homogenous clayey silt beds, and the vertical separation between beds interlaminated with silt and very fine sand, are roughly consistent with the acoustic measurements of changes in bed elevations during deposition and erosion. The variability in individual bed thickness is the result of variations of processes over an individual tidal cycle and is not a product of variations over the spring neap fortnightly timescale.
    Description: The authors would like to acknowledge the Hudson River Foundation, who provided funding for this work under grant 009/00A.
    Keywords: Sediment transport ; Estuarine processes ; Fluid mud
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Ocean Modelling 33 (2010): 299-313, doi:10.1016/j.ocemod.2010.03.003.
    Description: A variety of algorithms are available for parameterizing the hydrodynamic bottom roughness associated with grain size, saltation, bedforms, and wave–current interaction in coastal ocean models. These parameterizations give rise to spatially and temporally variable bottom-drag coefficients that ostensibly provide better representations of physical processes than uniform and constant coefficients. However, few studies have been performed to determine whether improved representation of these variable bottom roughness components translates into measurable improvements in model skill. We test the hypothesis that improved representation of variable bottom roughness improves performance with respect to near-bed circulation, bottom stresses, or turbulence dissipation. The inner shelf south of Martha’s Vineyard, Massachusetts, is the site of sorted grain-size features which exhibit sharp alongshore variations in grain size and ripple geometry over gentle bathymetric relief; this area provides a suitable testing ground for roughness parameterizations. We first establish the skill of a nested regional model for currents, waves, stresses, and turbulent quantities using a uniform and constant roughness; we then gauge model skill with various parameterization of roughness, which account for the influence of the wave-boundary layer, grain size, saltation, and rippled bedforms. We find that commonly used representations of ripple-induced roughness, when combined with a wave–current interaction routine, do not significantly improve skill for circulation, and significantly decrease skill with respect to stresses and turbulence dissipation. Ripple orientation with respect to dominant currents and ripple shape may be responsible for complicating a straightforward estimate of the roughness contribution from ripples. In addition, sediment-induced stratification may be responsible for lower stresses than predicted by the wave–current interaction model.
    Description: Funding was provided through the Office of Naval Research Ripples DRI and U.S. Geological Survey Coastal and Marine Geology Program.
    Keywords: Sediment transport ; Roughness ; Bottom-boundary layer ; Model skill
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 5451–5455, doi:10.1002/2013GL057906.
    Description: Tropical Storms Irene and Lee in 2011 produced intense precipitation and flooding in the U.S. Northeast, including the Hudson River watershed. Sediment input to the Hudson River was approximately 2.7 megaton, about 5 times the long-term annual average. Rather than the common assumption that sediment is predominantly trapped in the estuary, observations and model results indicate that approximately two thirds of the new sediment remained trapped in the tidal freshwater river more than 1 month after the storms and only about one fifth of the new sediment reached the saline estuary. High sediment concentrations were observed in the estuary, but the model results suggest that this was predominantly due to remobilization of bed sediment. Spatially localized deposits of new and remobilized sediment were consistent with longer term depositional records. The results indicate that tidal rivers can intercept (at least temporarily) delivery of terrigenous sediment to the marine environment during major flow events.
    Description: This research was supported by grants from the Hudson Research Foundation (002/07A) and the National Science Foundation (1232928).
    Description: 2014-04-18
    Keywords: Sediment transport ; Tidal river ; Estuary ; Sediment trapping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: image/tiff
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...