ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (8)
  • Mid-Atlantic Ridge  (7)
  • 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous  (5)
  • American Geophysical Union  (17)
  • 2010-2014  (17)
Sammlung
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2017-04-04
    Beschreibung: 129 Long Period (LP) events, divided in two families were recorded by 50 stations deployed on Mount Etna within an eruptive context in the second half of June 2008. In order to understand the mechanisms of these events, we perform moment tensor inversion. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainities in the velocity model. These tests emphasize the importance of using stations located as close as possible to the source in the inversion of LP events. Inversion of LP signals is initially unconstrained, in order to estimate the most likely mechanism. Constrained inversions then allow us to accurately determine the structural orientations of the mechanisms. Inversions for both families show mechanisms with strong volumetric components. These events are generated by cracks striking SW-NE for both families and dipping 70± SE (fam. 1) and 50± NW (fam. 2). The geometries of the cracks are different from the structures obtained by the location of these events. The orientation of the cracks is consistent with the local tectonic context on Mount Etna. The LP events seem to be a response to the lava fountain occuring on the 10th of May, 2008.
    Beschreibung: In press
    Beschreibung: (38)
    Beschreibung: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Beschreibung: 3.1. Fisica dei terremoti
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Long-Period events ; earthquake source mechanism ; Etna Volcano ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: One hundred twenty-nine long-period (LP) events, divided into two families of similar events, were recorded by the 50 stations deployed on Mount Etna in the second half of June 2008. During this period lava was flowing from a lateral fracture after a summit Strombolian eruption. In order to understand the mechanisms of these events, we perform moment tensor inversions. Inversions are initially kept unconstrained to estimate the most likely mechanism. Numerical tests show that unconstrained inversion leads to reliable moment tensor solutions because of the close proximity of numerous stations to the source positions. However, single forces cannot be accurately determined as they are very sensitive to uncertainties in the velocity model. Constrained inversions for a crack, a pipe or an explosion then allow us to accurately determine the structural orientations of the source mechanisms. Both numerical tests and LP event inversions emphasise the importance of using stations located as close as possible to the source. Inversions for both families show mechanisms with a strong volumetric component. These events are most likely generated by cracks striking SW–NE for both families and dipping 70° SE (family 1) and 50° NW (family 2). For family 1 events, the crack geometry is nearly orthogonal to the dikelike structure along which events are located, while for family 2 the location gave two pipelike bodies that belong to the same plane as the crack mechanism. The orientations of the cracks are consistent with local tectonics, which shows a SW–NE weakness direction. The LP events appear to be a response to the lava fountain occurring on 10 May 2008 as opposed to the flank lava flow.
    Beschreibung: Published
    Beschreibung: B01304
    Beschreibung: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Beschreibung: 3.1. Fisica dei terremoti
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Etna Volcano ; long-period events ; source mechanism ; location ; plumbing systems ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q0AG07, doi:10.1029/2012GC004059.
    Beschreibung: Detailed seismic refraction results show striking lateral and vertical variability of velocity structure within the Atlantis Massif oceanic core complex (OCC), contrasting notably with its conjugate ridge flank. Multichannel seismic (MCS) data are downward continued using the Synthetic On Bottom Experiment (SOBE) method, providing unprecedented detail in tomographic models of the P-wave velocity structure to subseafloor depths of up to 1.5 km. Velocities can vary up to 3 km/s over several hundred meters and unusually high velocities (~5 km/s) are found immediately beneath the seafloor in key regions. Correlation with in situ and dredged rock samples, video and records from submersible dives, and a 1.415 km drill core, allow us to infer dominant lithologies. A high velocity body(ies) found to shoal near to the seafloor in multiple locations is interpreted as gabbro and is displaced along isochrons within the OCC, indicating a propagating magmatic source as the origin for this pluton(s). The western two-thirds of the Southern Ridge is capped in serpentinite that may extend nearly to the base of our ray coverage. The distribution of inferred serpentinite indicates that the gabbroic pluton(s) was emplaced into a dominantly peridotitic host rock. Presumably the mantle host rock was later altered via seawater penetration along the detachment zone, which controlled development of the OCC. The asymmetric distribution of seismic velocities and morphology of Atlantis Massif are consistent with a detachment fault with a component of dip to the southeast. The lowest velocities observed atop the eastern Central Dome and conjugate crust are most likely volcanics. Here, an updated model of the magmatic and extensional faulting processes at Atlantis Massif is deduced from the seismic results, contributing more generally to understanding the processes controlling the formation of heterogeneous lithosphere at slow-rate spreading centers.
    Beschreibung: NSF support was provided via grant OCE-0927442.
    Beschreibung: 2012-11-19
    Schlagwort(e): Mid-Atlantic Ridge ; Detachment fault ; Gabbro ; Oceanic core complex ; Seismic structure ; Serpentinized peridotite
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08004, doi:10.1029/2007GC001629.
    Beschreibung: New seismic refraction data reveal that hydrothermal circulation at the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge at 26°10′N is not driven by energy extracted from shallow or mid-crustal magmatic intrusions. Our results show that the TAG hydrothermal field is underlain by rocks with high seismic velocities typical of lower crustal gabbros and partially serpentinized peridotites at depth as shallow as 1 km, and we find no evidence for low seismic velocities associated with mid-crustal magma chambers. Our tomographic images support the hypothesis of Tivey et al. (2003) that the TAG field is located on the hanging wall of a detachment fault, and constrain the complex, dome-shaped subsurface geometry of the fault system. Modeling of our seismic velocity profiles indicates that the porosity of the detachment footwall increases after rotation during exhumation, which may enhance footwall cooling. However, heat extracted from the footwall is insufficient for sustaining long-term, high-temperature, hydrothermal circulation at TAG. These constraints indicate that the primary heat source for the TAG hydrothermal system must be a deep magma reservoir at or below the base of the crust.
    Beschreibung: This research was supported by NSF grant OCE-0137329.
    Schlagwort(e): TAG hydrothermal field ; Crustal structure ; Detachment faulting ; Mid-Atlantic Ridge ; Slow spreading ridge
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-06-09
    Beschreibung: The 11–13 January 2011 eruptive episode at Etna volcano occurred after several months of increasing ash emissions from the summit craters, and was heralded by increasing SO2 output, which peaked at ∼5000 megagrams/day several hours before the start of the eruptive activity. The eruptive episode began with a phase of Strombolian activity from a pit crater on the eastern flank of the SE‐Crater. Explosions became more intense with time and eventually became transitional between Strombolian and fountaining, before moving into a lava fountaining phase. Fountaining was accompanied by lava output from the lower rim of the pit crater. Emplacement of the resulting lava flow field, as well as associated lava fountain‐ and Strombolian‐phases, was tracked using a remote sensing network comprising both thermal and visible cameras. Thermal surveys completed once the eruptive episode had ended also allowed us to reconstruct the emplacement of the lava flow field. Using a high temporal resolution geostationary satellite data we were also able to construct a detailed record of the heat flux during the fountain‐fed flow phase and its subsequent cooling. The dense rock volume of erupted lava obtained from the satellite data was 1.2 × 106 m3; this was emplaced over a period of about 6 h to give a mean output rate of ∼55 m3 s−1. By comparison, geologic data allowed us to estimate dense rock volumes of ∼0.85 × 106 m3 for the pyroclastics erupted during the lava fountain phase, and 0.84–1.7 × 106 m3 for lavas erupted during the effusive phase, resulting in a total erupted dense rock volume of 1.7–2.5 × 106 m3 and a mean output rate of 78–117 m3 s−1. The sequence of events and quantitative results presented here shed light on the shallow feeding system of the volcano.
    Beschreibung: Published
    Beschreibung: B11207
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: partially_open
    Schlagwort(e): Etna ; lava fountains ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-06-09
    Beschreibung: We present a new method that uses cooling curves, apparent in high temporal resolution thermal data acquired by geostationary sensors, to estimate erupted volumes and mean output rates during short lava fountaining events. The 15 minute temporal resolution of the data allows phases of waxing and peak activity to be identified during short (150-to- 810 minute-long) events. Cooling curves, which decay over 8-to-21 hour-periods following the fountaining event, can also be identified. Application to 19 fountaining events recorded at Etna by MSG’s SEVIRI sensor between 10 January 2011 and 9 January 2012, yields a total erupted dense rock lava volume of 28 106 m3, with a maximum intensity of 227 m3 s 1 being obtained for the 12 August 2011 event. The timeaveraged output over the year was 0.9 m3 s 1, this being the same as the rate that has characterized Etna’s effusive activity for the last 40 years.
    Beschreibung: We are grateful to EUMETSAT for SEVIRI data.
    Beschreibung: Published
    Beschreibung: L06305
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): satellite ; lava fountains ; Etna ; erupted volume ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-02-03
    Beschreibung: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Beschreibung: A new set of geodetic velocities for Greece and the Aegean, derived from 254 survey-mode and continuous GPS sites, is used to test kinematic and dynamic models for this area of rapid continental deformation. Modeling the kinematics of the Aegean by the rotation of a small number (3–6) of blocks produces RMS misfits of ~5 mm yr−1 in the southern Aegean and western Peloponnese, indicating significant internal strain within these postulated blocks. It is possible to fit the observed velocities to within 2–3 mm yr−1 (RMS) by models that contain 10 or more blocks, but many such models can be found, with widely varying arrangements of blocks, that fit the data equally well provided that the horizontal dimension of those blocks is not larger than 100–200 km. A continuous field of velocity calculated from the GPS velocities by assuming that strain rates are homogeneous on the scale of ~120 km fits the observed velocities to better than 2–3 mm yr−1 (RMS), with systematic misfits, representing more localized strain, confined to a region approximately 100 × 100 km in size around the western Gulf of Corinth. This velocity field accounts for the major active tectonic features of Greece and the Aegean, including the widespread north-south extensional deformation and the distributed strike-slip deformation in the NE Aegean and western Greece. The T axes of earthquakes are aligned with the principal axes of elongation in the geodetic field, major active normal fault systems are perpendicular to those axes, and ~90% of the large earthquakes in this region during the past 120 years took place within the areas in which the geodetic strain rate exceeds 30 nanostrain yr−1. These observations suggest that the faulting within the upper crust of the Aegean region is driven by forces that are coherent over a scale that is significantly greater than 100 km. It is likely that those forces arise primarily from differences in gravitational potential energy within the lithosphere of the region.
    Beschreibung: Published
    Beschreibung: B10403
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): GPS ; Greece ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2012-02-03
    Beschreibung: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Beschreibung: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Beschreibung: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Beschreibung: Published
    Beschreibung: B10405
    Beschreibung: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-04-04
    Beschreibung: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Beschreibung: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Beschreibung: Published
    Beschreibung: L20311
    Beschreibung: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-04-04
    Beschreibung: Flank instability at basaltic volcanoes is often related to repeated dike intrusions along rift zones and accompanied by surface fracturing and seismicity. These processes have been mostly studied during specific events, and the lack of longer-term observations hinders their better understanding. Here we analyze ~20 years of deformation of the Pernicana Fault System (PFS), the key structure controlling the instability of the eastern flank of Mt. Etna. We exploit East-West and vertical components of mean deformation velocity, as well as corresponding time series, computed from ERS/ENVISAT (1992–2010) and COSMO-SkyMed (2009–2011) satellite radar sensors via Synthetic Aperture Radar Interferometry techniques. We then integrate and compare this information with field, seismic, and leveling data, collected between 1980 and 2012. We observe transient displacements accompanied by seismicity, overprinted on a long-term background eastward motion (~2 cm/yr). In the last decades, these transient events were preceded by a constant amount of accumulated strain near the PFS. The time of strain accumulation varies between a few years and a few decades, also depending on magma emplacement within the nearby North East Rift, which may increase the strain along the PFS. These results suggest that the amount of deformation near the PFS may be used as a gauge to forecast the occurrence of instability transients on the eastern flank of Etna. In this context, the PFS may provide an ideal, small-scale structure to test the relations between strain accumulation, stress loading, and seismic energy release.
    Beschreibung: This work has been partially supported by the Italian Space Agency (ASI) within the SAR4Volcanoes project, agreement I/ 034/11/0.
    Beschreibung: Published
    Beschreibung: 4398-4409
    Beschreibung: 1T. Geodinamica e interno della Terra
    Beschreibung: 2T. Tettonica attiva
    Beschreibung: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Beschreibung: 4T. Fisica dei terremoti e scenari cosismici
    Beschreibung: 5T. Sorveglianza sismica e operatività post-terremoto
    Beschreibung: 1V. Storia e struttura dei sistemi vulcanici
    Beschreibung: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Beschreibung: 3V. Dinamiche e scenari eruttivi
    Beschreibung: 4V. Vulcani e ambiente
    Beschreibung: 6A. Monitoraggio ambientale, sicurezza e territorio
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Volcano flank instability ; Pernicana fault ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...